\input style \noindent %% 41 (12), $a$, $(d\ d\ b\ c\ d\ b\ b\ c\ a)\T \alpha'$, $\alpha'$--- . (󄎁 $a$ , ; , $a$ .) , , $\alpha$ $b$, , $\alpha=(c\ d\ d\ b) \T \alpha''$, $\alpha''$--- . , \emph{ - $\alpha\T\beta=\pi$, $\alpha$ $y$, $$ (x_1\ \ldots\ x_n\ y), \qquad n\ge 0, x_1, \ldots, x_n\ne y, \eqno(14) $$ $\alpha$.} 򀊎 , $\pi$ $y$; $\pi$, $y$.  \proclaim 򅎐 A.  $M$ "$<$". ꀆ $\pi$ $M$ $$ \pi=(x_{11}\ldots x_{1n_1}y_1)\T(x_{21}\ldots x_{2n_2}y_2)\T \ldots (x_{t1}\ldots x_{tn_t}y_t), \quad t\ge 0, \eqno(15) $$ : $$ \displaylines{ y_1\le y_2 \le \ldots \le y_t;\cr \hfill y_i0$ (16) , $y_1$--- $\pi$ $(x_{11}\ldots x_{1n_1}y_1$--- %%42 , $y_1$.  $(x_{11}\ldots x_{1n_1} y_1)$ ; (7). \proofend 퀏, "" (12), , : $$ (d\ d\ b\ c\ d\ b\ b\ c\ a)\T(b\ a)\T(c\ d\ b)\T(d), \eqno(17) $$ $a