\input style %% 109 \picture{. 11. 񎎒 2- . ꓐ , 2- .}  $A_n$--- 2- $\{1, 2, \ldots, n\}$. ߑ, $A_1=0$, $A_2=1$, $A_3=2$, $$ 1\ 3\ 2\ 4\quad 1\ 2\ 3\ 4 \quad 1\ 2\ 4\ 3\quad 2\ 1\ 3\ 4\quad 2\ 1\ 4\ 3 \quad 3\ 1\ 4\ 2 $$ , $A_4=1+0+1+1+2+3=8$. $A_n$ , .~11 $n=15$. 2- $(0, 0)$ $(\ceil{n/2}, \floor{n/2})$, $k$- , $k$ . 2- $n$- . 퀏, $$ 2\ 1\ 3\ 4\ 6\ 5\ 7\ 10\ 8\ 11\ 9\ 12\ 14\ 13\ 15. \eqno(1) $$ 䀋, "", ; , $(i, j)$ %% 110 $(i+1, j)$ $\abs{i-j}$. 테 , , (. .~12). , , (1) $1+0+1+0+1+2+1=6$ . 呋 $a\le a'$ ~$b\le b'$, $(a, b)$ $(a', b')$ $a'-a$ $b'-b$ , $$ \perm{a'-a+b'-b}{a'-a}. $$ 񋅄, , $(i, j)$ ~$(i+1, j)$, $$ \perm{i+j}{i}\perm{n-i-j-1}{\floor{n/2}-j}. $$ 󌍎 , $$ \eqalign{ A_{2n}&=\sum_{0\le i\le n \atop 0\le j\le n} \abs{i-j}\perm{i+j}{i}\perm{2n-i-j-1}{n-j};\cr A_{2n+1}&=\sum_{0\le i\le n \atop 0\le j\le n} \abs{i-j}\perm{i+j}{i}\perm{2n-i-j}{n-j};\cr } \eqno(2) $$ 獀 , .~14 , $A_n$ : $\floor{n/2}2^{n-2}$. 񋅄, 2- $$ \floor{n/2}2^{n-2}/\perm{n}{\floor{n/2}}. $$ 񒈐 $\sqrt{\pi/128}n^{3/2}\approx 0.15 n^{3/2}$. ꀊ , $$ \perm{\floor{n/2}+1}{2}\approx{1\over8}n^2. $$  , $$ \matrix{ h_1(z)=1, \quad h_2(z)=1+z,\cr h_3(z)=1+2z, \quad h_4(z)=1+3z+z^2+z^3, \ldots,\cr } \eqno(3) $$ %% 111 . 15. 򀊈 , , $n^{3/2}$, . D, $h$ ~1. \proclaim 򅎐 H. 񐅄 $h$- $\{1, 2, \ldots, n\}$ $$ f(n, h)={2^{2q-1}q!q! \over (2q+1)!}\left(\left({h\over2}\right)q(q+1)+ \left({r\over2}\right)(q+1)-{1\over2}\perm{h-r}{2}q\right), \eqno(4) $$ $q =\floor{n/h}$, $r= n \bmod h$. 䓃 [Bachelor's thesis, Princeton University (April, 1967)]. 瀌, $h\ge n: f (n, h) ={1\over2}\left({n\over2}\right)$. \proof $h$- $r$ $q+1$ $h-r$ $q$. ꀆ , $h$- 2- .  , $$ \perm{r}{2}{A_{2q+2}\over\perm{2q+2}{q+1}} +r(h-r){A_{2q+1}\over\perm{2q+1}{q}} +\perm{h-r}{2}{A_{2q}\over\perm{2q}{q}}=f(n,h).\;\endmark $$ \eproofend \proclaim 񋅄. 呋 $$ h_{s+1}\bmod h_s=0\rem{ $t>s\ge 1$,} \eqno(5) $$ D $$ \sum_{t\ge s\ge 1} (r_sf(q_s+1, h_{s+1}/h_s)+(h_s-r_s)f(q_s, h_{s+1}/h_s)), \eqno(6) $$ $r_s=N\bmod h_s$, $q_s=\floor{N/h_s}$, $h_{t+1}=Nh_t$, $f$ (4). \proof  $h_s$- $r_s(h_{s+1}/h_s)$- $q_s+1$ ~$(h_s-r_s)$ $q_s$.  , , , ---"" $(h_{s+1}/h_s)$- %%112 , $(h_{s+1}/h_s)$- . \proofend 󑋎 (5) \emph{} , $h$ ~1.  $q=\floor{N/h}$, a~$r=N\bmod h$, $B$ D $$ rf(q+1, N)+(h-r)f(q, N)+f(N,h) ={r\over2}\perm{q+1}{2}+{h-r\over2}\perm{q}{2}+f(N,h). $$ $f(n, h)$ $(\sqrt{\pi}/8)n^{3/2}h^{1/2}$; . .~12. 񋅄, \picture{. 12. 񐅄 $f(n, h)$ $h$- $n$ $n=64$.} D $2N^2/h+\sqrt{\pi N^3h}$.  $h$ $\root 3\of{16N/\pi}\approx1.72\root3\of{N}$; $h$ $N^{5/3}$. 򀊈 , , , $O(N^2)$ ~$O(N^{1.667})$. ߑ, , . .~18 $h_t$,~\dots, $h_1$ ~$t$ %%113 , $h$ ; $N$ $O(N^{1.5+\varepsilon/2}$ $\varepsilon=1/(2^t-1)$. 呋 , $N^{1.5}$ , $$ f(N, h_2)\approx(\sqrt{\pi}/8)N^{3/2}h_2^{1/2}. $$ , , $h_t$, \dots, $h_1$ \emph{ } (5), . 퀏, 8-, 4- 2- ; 1- $O(N^{3/2})$ . 7-, 5- 3- , 1- $2N$ ! (. .~26.) . \proclaim 򅎐 .  $h$- $k$- $k$-. 򀊈 , , 7-, 5-, . 7- 5-. 3-, 7-, 5- 3-.  . 4. \picture{򀁋 4 񎐒 (7, 5, 3, 1)} \proof .~20 , : %%114 \proclaim 녌 L.  $m$, $n$, $r$--- , $x_1$, \dots, $x_{m+r}$ ~$y_1$, \dots, $y_{n+r}$--- , , $$ y_1\le x_{m+1}, y_2\le x_{m+2}, \ldots, y_r\le x_{m+r}. \eqno(7) $$ 呋 $x$ ~$y$ , $x_1\le\ldots\le x_{m+r}$ ~$y_1\le\ldots\le y_{n+r}$, (7) . \proof 臂, , , , $m$ $x$, (. . ) $y$, $x$ $y$.  $1\le j\le r$. $x_{m+j}$ $m+j$ $x$, $j$ $y$, , $j$ \emph{} $y$. 񋅄, $x_{m+j}\ge y_j$. \endmark\hskip 1em %\proofend \proofend , , , D. $\{1, 2, \dots, n\}$, $h$- $k$-, $n!$, , ; $k$- $h$- $k$- $h$- . ᎋ , " " D $h_t$, \dots, $h_1$.  ; , , ,--- . \proclaim 򅎐 P. 呋 $h_s= 2^s-1$ $1\le s\le t=\floor{\log_2 N}$, D $O(N^{3/2})$ \proof 䎑 $B_s$ $s$- , , $B_t+\cdots+B_1=O(N^{3/2})$. 䋟 $t/2$ $t\le s\ge t/2$ $B_s=O(h_s(N/h_s)^2)$, a .~23: $B_s=O(Nh_{s+2}h_{s+1}/h_s)$. 񋅄, $B_t+\cdots+B_1=O(N (2 + 2^2 +\cdots+2^{t/2}++2^{t/2}+\cdots+2))=O(N^{3/2})$. \proofend .~.~ .~.~񒀑 [{\sl  \/}, 1,3 (1965), 81--98].  \emph{} , %%115 \ctable{ \hfill\bskip$#$\bskip\hfill&&\hfill\bskip$#$\bskip\hfill\cr \noalign{\rightline{\it 򀁋 5}} \noalign{\centerline{\bf D $N=8$}} \multispan{3}\hbox{} & A_{ave} & B_{ave} & S & T & \hbox{ \MIX}\cr & &1 & 1.718 &14.000 & 1 & 1 & 204.85u\cr & 2 & 1& 2.667 & 9.657 & 3 & 2 & 235.91u\cr & 3 & 1& 2.917 & 9.100 & 4 & 2 & 220.16u\cr & 4 & 1& 3.083 &10.000 & 5 & 2 & 217.75u\cr & 5 & 1& 2.601 &10.000 & 6 & 2 & 210.00u\cr & 6 & 1& 2.135 &10.667 & 7 & 3 & 206.60u\cr & 7 & 1& 1.718 &12.000 & 8 & 2 & 208.85u\cr 4 & 2 & 1& 3.500 & 8.324 & 7 & 3 & 272.32u\cr 5 & 3 & 1& 3.301 & 8.167 & 9 & 3 & 251.60u\cr 3 & 2 & 1& 3.320 & 7.829 & 6 & 3 & 278.50u\cr } \emph{} . , , $h$ (5), $N^2$, .~24 , $3/2$ . 荒 P 1969~. ⎃ . \dfn{呋 $2^p3^q$, $N$, D $N (\log N)^2$}. . ,  , , $N$ ; . .~30 ~31. \emph{} D, $(9B+10NT+13T-10S-3A+1)u$. .~5 $N=8$. ꀆ , .~19, , $5$ $3$ $1$ $3$ $2$ $1$; $8!$ . 瀌, $N$ , $t=1$; , $N=8$ . (񐅄 S $N=8$ $191.85u$.) 랁, $h_2=6$, 5 ~$B$. $3$ $2$ $1$ , %% 116 . ᛒ , "" , , : $$ \matrix{ h_3=5, & h_2=3, & h_1=1: & 8 & 5 & 2 & 6 & 3 & 7 & 4 & 1 & \hbox{(19 )}\cr h_3=3, & h_2=2, & h_1=1: & 8 & 3 & 5 & 7 & 2 & 4 & 6 & 1 & \hbox{(17 )}\cr } $$ $N$ . .~6 $N=1000$.  (5), (6); . ᛋ 1000 , . , D . $\floor{N/2}$, $\floor{N/4}$, $\floor{N/8}$, \dots , $N$ . 뀇 [{\sl CACM\/}, {\bf 3} (1960), 20--22] , , , $1$ , , . [{\sl CACM\/}, {\bf 6} (1963), 206--213] $2^k-1$;  񒀑 $2^k+1$. 񐅄 , . .~6,--- $(2^k-(-1)^k)/3$, $(3^k-1)/2$ 􈁎. 숍 6600 $2^k+1$, , , . D $9B+10NT+\cdots$ , , ${10\over9} N$; 1100 , .  $h_t$, , , , $N/3$, , . ᎋ D 䆅  䝂~.~ 񒝍 1971~.  , $B$ %%117 \picture{򀁋 6.} %%118 \bye