\input style $j\hbox{-}$~ ~$\cR_j$, ; , , , . ( .~11.)  \emph{} . 퀏, ~W , , ~R5, " " . 呋 ~W6 ~W , ~$U_n\asg V_{k+t}$ ( ~$V_k$), ~$t$--- , ~$a_1$,~\dots, $a_r$, , \emph{} ~$[0, 1)$, ~R5. 䐓, , , , , ~R6, \proclaim 򅎐~M.  ~$x$, $0\le x < 1$, ~$\$ , ~$x$ ~$0.X_0X_1\ldots\,$. 茅 , , $x$~ , ~R6. (䐓 , ~$x$, ~R6 , .) \proof ~$\cS$--- , ~$\$, , $s_n$~ ~$n$ ~$X_{s_k}$, ~$0\le k < n$, ~$\cR$--- . 򎃄 ~$\$ ~$\\cR$, ~R6 , , $1\hbox{-}$. 䎑 , \emph{ ~$\cR$ ~$\cS$ ~$N(\cR, \cS)$ ~$x$, ~$\$ , ~$\\cR$ $1\hbox{-}$, .} , $x$~ , $x$~ ~$\cup N(\cR, \cS)$, ~$\cR$ ~$\cS$. %% 182 , , $\cR$ ~$\cS$ . ~$T(a_1a_2\ldots{}a_r)$, ~$a_1a_2\ldots{}a_r$ ~$x$, ~$\$, ~$\\cR$ ${}\ge r$~, $r$~ ~$a_1$, $a_2$,~\dots, $a_r$. 񍀗 , \EQ[32]{ \hbox{ ~}T(a_1a_2\ldots{}a_r)\le 2^{-r}. } 瀌 , ~$T(a_1a_2\ldots{}a_r)$ : ~$T(a_1a_2\ldots{}a_r)$ ~$x=0.X_0X_1\ldots$, ~$m$, , ~$\cS$ ~$s_0$, $s_1$,~\dots, $s_m$, ~$\cS$ ~$X_{s_0}$, $X_{s_1}$,~\dots, $X_{s_m}$, , $X_{s_m}$~ $r\hbox{-}$~ . 썎 ~$y=0.Y_0Y_1\ldots$, , ~$Y_{s_k}=X_{s_k}$ ~$0\le k \le m$, ~$T(a_1a_2\ldots{}a_r)$ , ~$I_{b_1\ldots{}b_t}$.  , $T(a_1a_2\ldots{}a_r)$ , , , . ᎋ , , ~$T(a_1\ldots{}a_{r-1}0)$ ~$T(a_1\ldots{}a_{r-1}1)$, , , ~$Y_{s_k}=X_{s_k}$ ~$0\le k < m$ ~$Y_{s_m}\ne X_{s_m}$ .  \EQ{ T(a_1\ldots a_{r-1}0)\cup T(a_1\ldots a_{r-1}1)\subseteq T(a_1\ldots{}a_{r-1}), } ~$T(a_1a_2\ldots{}a_r)$ ~$T(a_1\ldots{}a_{r-1})$. 텐~\eqref[32] ~$r$. 򅏅, ~\eqref[32] , : . 䀋 , , , . ~$0<\varepsilon<1$ ~$B(r, \varepsilon)$ ~$\bigcup T(a_1\ldots{}a_r)$, ~$a_1\ldots{}a_r$, , ~$\nu(r)$ ~$a_1$,~\dots, $a_r$ \EQ{ \abs{\nu(r)-{1\over2}r}\ge 1+\varepsilon r. } ꎋ ~$C(r, \varepsilon)=\sum \perm{r}{k}$, ~$k$, , ~$\abs{k-{1\over2}r}\ge 1+\varepsilon r$. %% 183 ~$r=2t$ . ~$\sum\perm{r}{k}$. 呋~$k>0$, \EQ{ \eqalign{ \perm{2t}{t+k}&=\perm{2t}{t}{t\over t+1}{t-1\over t+2}\ldots {t-k+1\over t+k} <\perm{2t}{t}{t\over t}{t-1\over t}\ldots{t-k+1\over t}\le\cr &\le \perm{2t}{t}e^{-0/t}e^{-1/t}\ldots e^{-(k-1)/t}=\perm{2t}{t}e^{-k(k-1)/r}.\cr } } 򀊈 , \EQ{ \eqalign{ C(r, \varepsilon)=2\sum_{k\ge 1+\varepsilon r} \perm{2t}{t+k} &\le 2\perm{2t}{t}\sum_{k\ge1+\varepsilon r}e^{-k(k-1)/r}\le\cr &\le 2\perm{2t}{t}t e^{-(1+\varepsilon r)\varepsilon)} < r\perm{r}{t}e^{-\varepsilon^2r}.\cr } } , ~$r=2t+1$ \EQ{ C(r, \varepsilon)\cR$, $1\hbox{-}$, a $\nu(r)$~ ~$r$ , \EQ{ \abs{\nu(r)/r-{1\over 2}}\ge 2\varepsilon } ~$\varepsilon>0$ ~$r$. , ~$x$ ~$r$ ~$B^*(r, \varepsilon)$. 򀊈 , , \EQ{ N(\cR, \cS)=\bigcup_{t\ge 2} \bigcap_{r\ge1} B^*(r, 1/t). } ~\eqref[34] , ~$\bigcap_{r\ge1} B^*(r, 1/t)$ ~$t$ ; , $N(\cR, \cS)$ . \proofend %% 184 \emph{} , ~R6, ~$[0, 1)$, . .\ .~36. ~R6. \section{.~񋓗 }. ⛘ , , . 텑 , , ~$011101001$ " ", ~$101010101$, " ", ~$000000000$. , , , . 񓙅 , . ᓄ $b\hbox{-}$ . 呋 $b\hbox{-}$ ~$X_1$, $X_2$,~\dots, $X_N$, , \EQ{ \Pr(S(n))\approx p, \rem{~$\abs{\nu(N)/N-p}\le 1/\sqrt{N}$,} } ~$\nu(n)$---, ~A .  "$k\hbox{-}$", \EQ{ \Pr(X_nX_{n+1}\ldots{}X_{n+k-1}=x_1x_2\ldots x_k)\approx 1/b^k } $b\hbox{-}$ ~$x_1 x_2 \ldots x_k$. (.\ ~D. , $k\hbox{-}$, $(k-1)\hbox{-}$.) 򅏅 , ~R1. \proclaim ~Q1. $b\hbox{-}$ ~$N$ "", $k\hbox{-}$ ( ) ~$k$, , ~$k\le \log_b N$. , , 170~ ~11: \EQ{ \matrix{ 00000001111 & 10000000111 & 11000000011 & 11100000001\cr 00000001110 & 10000000110 & 11000000010 & 11100000000\cr 00000001101 & 10000000101 & 11000000001 & 10100000001\cr 00000001011 & 10000000011 & 01000000011 & 01100000001\cr 00000000111\cr } } %% 185 ~$01010101010$ , , , .  , ~R6, . ~$A$ , ~$\\cR$, , ~M. \proclaim ~Q2. $b\hbox{-}$ ~$X_1$, $X_2$,~\dots, $X_N$ $(n, \varepsilon)\hbox{-}$ ~$A$ , ~$X_{t_1}$, $X_{t_2}$,~\dots, $X_{t_m}$, , ~$A$, ~$m0$ ~$i$, $j$. 呋~$\sum_{i,j\ge 1}\Pr(S_{ij}(n))=1$, , ~$i\ge 1$ ~$\Pr(S_{ij}(n))$ ~$j\ge 1$) ~$\sum_{j\ge 1}\Pr(S_{ij}(n))$? \ex[M15] 䎊 ~\eqref[13]. \ex[20] 䎊 ~E. [\emph{󊀇:} ~$\sum_{1\le j \le m} (y_{jn}-\alpha)^2$.] \rex[22] ㄅ ~C , $q$~~$m$? \rex[20]  ~C, , ~$\$ $\infty\hbox{-}$, ~$\$. \ex[20] , $k\hbox{-}$ " ~$k$" : $\Pr(u\le\max(U_n, U_{n+1},~\ldots, U_{n+k-1}f(n-1)$, , ~$\alpha\le U_m<\beta$. 򎃄~$\Pr(f(n)-f(n-1)=k)=p(1-p)^{k-1}$. \ex[25] , $\infty\hbox{-}$ . 呋~$f(0)=1$ ~$f(n)$ ~$n\ge 1$ ~$m>f(n-1)$, , ~$U_{m-1}>U_m$, \EQ{ \Pr(f(n)-f(n-1)=k)=2k/(k+1)!-2(k+1)/(k+2)!. } \rex[30] , $\infty\hbox{-}$ , , .  $X_1$, $X_2$,~\dots{} $\infty\hbox{-}$ . ~$f(0)=0$ ~$f(n)$ ~$n\ge 1$ ~$m>f(n-1)$, , ~$\set{X_{f(n-1)+1},~\ldots, X_m}$ ~$\set{0, 1}$. 䎊,~$\Pr(f(n)-f(n-1)=k)=2^{1-k}$; $k\ge 2$. (.\ .~7.) \ex[38] 񏐀 $\infty\hbox{-}$ , ? (.\ .) \ex[50] , ~$r$--- , ~$U_n=(r^n\bmod 1)$ $2\hbox{-}$. 񓙅 ~$r$, , ? , , ~$r=3/2$? [. .~쀋 ({\sl Mathematika,\/} {\bf 4} (1957), 122--124).] \rex[22] 䎊, ~$U_0$, $U_1$,~\dots{} $k\hbox{-}$, ~$V_0$, $V_1$,~\dots, ~$V_n=\floor{nU_n}/n$. \ex[46] ~R4, "$\infty\hbox{-}$" "$1\hbox{-}$". 񓙅 , , $\infty\hbox{-}$? ( ?) \ex[BM50] 󄎂 ~$U_n=(\theta^n\bmod 1)$ ~R4 ~$\theta>1$? ( , .~19, , , $s_0$, $s_1$, $s_2$,~\dots{} ~$U_n=(\theta^{s_n}\bmod 1)$ $\infty\hbox{-}$ ~$\theta>1$.) %% 191 \bye