явление. Чтобы не произошло повреждения. Для станции, конечно, ненормально -несет убыток из-за недовыработки электроэнергии, а если было ограничение потребителей, то и штраф. Жителям Земли нужны сведения только об авариях, обычно они связаны в той или иной мере с разрушениями, с радиоактивными выбросами за пределы здания станции или в самом здании, и с загрязнением помещений, не предназначенных для этого. И еще категория случаев, которые не ведут ни к останову, ни к снижению мощности и авариями чаще не называются, но ведут к загрязнению территории станции, уже не говоря за ее пределами. Вот о чем население должно быть информировано. Все остальное населению неинтересно знать. Если часты остановки - поменяют руководство, персонал, с переходом в частные руки обанкротится станция. Порядок так или иначе будет наведен. Многие спрашивают: было ли у меня какое-то предчувствие беды? Нет, никакого. Да если говорить откровенно, не очень-то и верю в предчувствия. Приводимые в печати разные случаи, вроде бы и несомненные, ие убеждают. Надо еще знать тех людей. Если человек делал всегда так, если он не подвержен в действиях колебаниям и сомнениям и если вдруг отступил от правила, что его и спасло, тогда имеет смысл подумать. А если в нем сидит огромный червь сомнения, и он десятки раз передумывает и вот куда-то не пошел или не поехал, стоит ли об этом говорить. Поехали из г. Комсомольск-на-Амуре И. Лева и А. Володя в отпуск. В Хабаровске - пересадка на самолет до Москвы, пошли в ресторан. Володя напился и пока возились - опоздали на самолет, который и разбился близ Иркутска. Что это, предчувствие? Нет. Для Володи это - обычное явление. Вот если бы Лева напился, тут можно было бы задуматься. Нет, все в ту ночь делал как всегда. Пришел в кабинет, позвонил на блок выяснить обстановку. Перекурил, переоделся и зашел, как всегда, вначале на щит третьего блока узнать как дела. И лишь после этого пошел на четвертый блок. Четвертый энергоблок по согласованию с энергосистемой 25 апреля должен был остановиться на профилактический ремонт. К середине дня мощность реактора снизили до пятидесяти процентов и остановили один из двух ТГ. Далее диспетчер энергосистемы запретил снижение до прохождения вечернего максимума потребления электроэнергии и останов разрешил в 23 часа 25 апреля. Ничего заслуживающего внимания в это время не происходило. Велись обычно намечаемые на останов проверки и испытания по типовым программам. Пожалуй, только один факт можно отметить из этого дня. После снижения мощности реактора началось его отравление продуктом деления топлива - ксеноном и, соответственно, уменьшение ОЗР. Есть и другие эффекты, влияющие на реактивность, однако, обычно отравление преобладает. Минимальный запас реактивности, зафиксированный блочной ЭВМ, составил 13,2 стержня, что меньше допускаемых Регламентом 15 стержней. Вместе с тем отмечено, что при этом из-за сбоя в вычислении машина не учла реактивность, компенсируемую 12 стержнями АР, расположенными в промежуточных положениях по высоте активной зоны. Так что недостающие 1,8 стержня они перекрывали. Затем реактор стал разо-травляться и в 23 часа 25 апреля запас реактивности составлял 26 стержней. При этом мощность реактора 50 %, в работе один ТГ No 8, все параметры в норме. Для создания целостной воспринимаемой картины произошедшего на блоке опишу события и разговоры без объяснения физических процессов и мотивов действий персонала. Опишу без утаивания и прибавлений в последовательности, многократно выверенной по записям системы контроля и в оперативных журналах группой работников Научно-технического центра Госпроматомэнергонадзора СССР для доклада комиссии этой организации <О причинах и обстоятельствах аварии на 4-м блоке Чернобыльской АЭС 26 апреля 1986 года> от 01.01.91 г. Эти данные не расходятся с ранее приводимыми в технических отчетах, они только наиболее подробные. Полный хронологический перечень событий приведен в Приложении 2, здесь же - только основные. В 23 часа 10 минут 25 апреля после разрешения диспетчера энергосистемы начато дальнейшее снижение мощности реактора и. соответственно, энергетической нагрузки на работающем ТГ. В 24 часа 25 апреля при передаче смены состояние следующее: мощность реактора - 750 МВт тепловых, ОЗР - 24 стержня, все параметры -согласно Регламенту. Перед передачей смены поговорил с начальником смены блока Ю. Трегубом и заступающим на смену А. Акимовым. Осталось только замерить вибрацию турбины на холостом ходу (без нагрузки на генераторе) и провести эксперимент по <Программе выбега ТГ>. Никаких вопросов не возникало. Измерение вибрации осуществляется при каждой остановке на ремонт, здесь все ясно. И по подготовке к последнему эксперименту у А. Акимова нет вопросов, он еще 25 апреля смотрел. После этого я ушел с БЩУ-4 для осмотра перед остановом интересующих меня мест. Так всегда делал. Во-первых, дефекты <охотнее> проявляют себя при смене режима, во-вторых, при снижении мощности можно более внимательно осмотреть помещения с повышенной радиационной опасностью. Нет, конечно, я не боялся работать в зоне с радиационными излучениями, но и без нужды лишнюю дозу получать не стремился. Да и нельзя годовую дозу набрать до конца года - отстранят от работы в зоне. Вернулся на щит управления в 00 часов 35 минут. Время установил после по диаграмме записи мощности реактора. От двери увидел склонившихся над пультом управления реактором, кроме оператора Л. Топтунова, начальника смены блока А. Акимова и стажеров В. Проскурякова и А. Кудрявцева. Не помню, может и еще кого. Подошел, посмотрел на приборы. Мощность реактора- 50...70 МВт. Акимов сказал, что при переходе с ЛАР на АР с боковыми ионизационными камерами произошел провал мощности до 30 МВт. Сейчас поднимают мощность. Меня это нисколько не взволновало и не насторожило. Отнюдь не из ряда вон выходящее явление. Разрешил подъем дальше и отошел от пульта. С Г.П. Метленко обговорили подготовку по <Программе выбега ТГ> и пометили в его экземпляре программы выполнение работы. Подошел А. Акимов и предложил не поднимать мощность до 700 МВт, как записано в <Программе выбега ТГ>, а ограничиться 200 МВт. Я согласился с ним. Заместитель начальника турбинного цеха Р. Давлетбаев сказал, что падает давление первого контура и, возможно, придется остановить турбину. Я ему сказал, что мощность уже поднимается и давление должно застабилизироваться. Еще Давлетбаев передал просьбу представителя Харьковского турбинного завода А.Ф. Кабанова замерить вибрацию турбины на свободном выбеге, т.е. при снижении оборотов турбины без нагрузки на генераторе. Но это затягивало работу, и я отказал ему, сказав: <При эксперименте мы реактор глушим, попробуй подхватить обороты (примерно от 2 000 об./мин), пару еще должно хватить>. В 00 часов 43 минуты заблокирован сигнал АЗ реактора по останову двух ТГ. Несколько ранее переведена уставка АЗ на останов турбины по снижению давления в барабан-сепараторах (в первом контуре) с 55 атмосфер на 50. В 01 час 03 и 07 минут запущены седьмой и восьмой ГЦН согласно Программе. А. Акимов доложил о готовности к проведению последнего эксперимента. Собрал участников для инструктажа кто за чем смотрит и по действиям в случае неполадок, кроме оператора реактора - ему отлучаться при таком режиме не следует. Все разошлись по назначенным местам. Кроме вахтенных операторов в это время на щите управления были задействованы в эксперименте работники электроцеха (Сурядный, Лысюк, Орленко), пуско-наладочного предприятия (Паламарчук), заместитель начальника турбинного цеха Давлетбаев, из предыдущей смены Ю. Трегуб и С. Разин, оставшиеся посмотреть, начальник смены реакторного цеха В. Перевозченко и стажеры Проскуряков, Кудрявцев. Режим блока: мощность реактора - 200 МВт, от ТГ No 8 запитаны питательные насосы и четыре из восьми ГЦН. Все остальные механизмы по электричеству запитаны от резерва. Все параметры в норме. Система контроля объективно зарегистрировала отсутствие предупредительных сигналов по реактору и системам. Для регистрации некоторых электрических параметров в помещении вне БЩУ был установлен шлейфовый осциллограф, включался он по команде в телефон - <Осциллограф-пуск>. На инструктаже было установлено, что по этой команде одновременно: закрывается пар на турбину; нажимается кнопка МПА - нештатная кнопка для включения блока выбега в системе возбуждения генератора; нажимается кнопка АЗ-5 для глушения реактора. Команду Топтунову дает Акимов. ...В 01 час 23 минуты 04 секунды системой контроля зарегистрировано закрытие стопорных клапанов, подающих пар на турбину. Начался эксперимент по выбегу ТГ. Со снижением оборотов генератора после прекращения подачи пара на турбину снижается частота электрического тока, обороты и расход циркуляционных насосов, запитанных от выбегающего генератора. Расход другой четверки насосов немного возрастает, но общий расход теплоносителя за 40 секунд снижается на 10... 15 %. При этом вносится в реактор положительная реактивность, АР стабильно удерживает мощность реактора, компенсируя эту реактивность. До 01 часа 23 минут 40 секунд не отмечается изменений параметров на блоке. Выбег проходит спокойно. На БЩУ тихо, никаких разговоров. Услыхав какой-то разговор, я обернулся и увидел, что оператор реактора Л. Топтунов разговаривает с А. Акимовым. Я находился от них метрах в десяти и что сказал Топтунов не слышал. Саша Акимов приказал глушить реактор и показал пальцем - дави кнопку. Сам снова обернулся к панели безопасности, за которой наблюдал. В их поведении не было ничего тревожного, спокойный разговор, спокойная команда. Это подтверждают Г.П. Метленко и только что вошедший на блочный щит мастер электроцеха А. Кухарь. Почему Акимов задержался с командой на глушение реактора, теперь не выяснишь. В первые дни после аварии мы еще общались, пока не разбросали по отдельным палатам, и можно было спросить, но я тогда, а тем более сейчас, не придавал этому никакого значения - взрыв бы произошел на 36 секунд ранее, только и разницы. В 01 ч 23 мин 40 с зарегистрировано нажатие кнопки АЗ реактора для глушения реактора по окончании работы. Эта кнопка используется как в аварийных ситуациях, так и в нормальных. Стержни СУЗ в количестве 187 штук пошли в активную зону и по всем канонам должны были прервать цепную реакцию. Но в 01 ч 23 мин 43 с зарегистрировано появление аварийных сигналов по превышению мощности и по уменьшению периода разгона реактора (большая скорость увеличения мощности). По этим сигналам стержни АЗ должны идти в активную зону, но они и без того идут от нажатия кнопки АЗ-5. Появляются другие аварийные признаки и сигналы: рост мощности, рост давления в первом контуре... В 01 час 23 минуты 47 секунд - взрыв, сотрясший все здание, и через 1-2 с, по моему субъективному ощущению, еще более мощный взрыв. Стержни АЗ остановились, не пройдя и половины пути. Все. В такой вот деловой будничной обстановке реактор РБМК-1000 четвертого блока ЧАЭС был взорван кнопкой аварийной защиты (!?!?). Далее я попытаюсь показать, что для взрыва того реактора и не надо было никаких особых условий. Если мне не удастся это, то только из-за неумения доходчиво изложить. Других причин нет, теперь все произошедшее ясно. После изложения событий на четвертом блоке 26 апреля 1986 г. так, как это воспринималось очевидцами, нужно дать пояснения: что происходило с реактором и его системами, почему персонал действовал так, а не иначе, что он нарушал и зачем. Ведь согласно официально объявленной версии именно персонал является виновником. Реактор, если и не был красивым, то уж хорошим-то был наверное. Только при невероятном сочетании нарушений порядка и правил эксплуатации реактора он взорвался. Целый коллектив авторов, человек двадцать со всевозможными учеными степенями, в журнале <Атомная энергия> утверждает, что оперативный персонал допустил непредсказуемые нарушения. Много чего наши ученые (чему ученые?) наговорили на персонал, вот только от персонала никому слова не было дано. И до сих пор, через пять лет после катастрофы, ни один центральный печатный орган - ни газета, ни журнал, - не напечатали ничего из написанного мной. Писал только в ответ на очередные измышления и клевету. Указывал, где проверить написанное, понимая, что зэку доверять <не можно>. Не то что доктору, уж не говоря об академике, - им-то доверие полное. Только киевская газета <Комсомольское знамя> напечатала, спасибо им. Что-то уж очень односторонняя у нас гласность. Смене, заступившей на четвертый блок в ночь на 26 апреля, предстояло сделать совсем немного. Нужно было снять электрическую нагрузку с генератора, измерить вибрацию турбины на холостом ходу и провести эксперимент по <Программе выбега ТГ>. Когда я ушел с БЩУ, видимо, из-за какой-то несогласованности между начальником смены Б. Рогожкиным и А. Акимовым вместо того, чтобы просто снять с генератора нагрузку, оставив мощность реактора 420 МВт, они начали ее снижать. Реактор в это время управлялся так называемым ЛАР мощности с внутризонными датчиками. Этот регулятор значительно облегчал жизнь оператору на относительно больших мощностях, но на меньших работал неудовлетворительно. Поэтому решили перейти на АР* с четырьмя ионизационными камерами вне зоны. Таких два равноценных регулятора и еще один малой мощности. При переходе с ЛАР на АР, оказавшийся неисправным, и произошел провал мощности до 30 МВт. Здесь персоналу приписывается два нарушения: подъем мощности после провала; мощность была поднята до 200 МВт. Само по себе снижение мощности реактора по той или иной причине - явление нередкое, нет, пожалуй, операторов реактора, у кого бы это не случалось. Можно ли было поднимать мощность после этого, на что операторы должны были ориентироваться? На показания приборов и Регламент. Согласно Регламенту снижение мощности реактора вручную или автоматически до любого уровня не ниже минимально-контролируемого считается частичным снижением мощности. Минимально-контролируемым уровнем считается мощность, при которой становится на автомат регулятор малой мощности, т.е. 8... 100 МВт. Не вдаваясь в технические подробности, сошлюсь на запись в журнале оператора реактора, что он уменьшил уставку задатчика уровня мощности, сбалансировал регулятор и поставил на автомат. Не доверять этой записи нет оснований, потому что он в момент записи не мог и знать, как надо врать. И без этого нет оснований подозревать его во лжи. Еще один момент. В Регламенте записано, что при снижении ОЗР менее 15 стержней РР реактор должен быть заглушен. Каким был запас реактивности при 30 МВт - измерить нельзя, устройство замера не годится. Можно было сделать только прикидочный расчет на основе известных в то время сведений по отравлению, мощностному коэффициенту реактивности. Согласно этому запас реактивности при провале мощности реактора был больше 15 стержней. Значит, нарушения персонал не допустил. Подробнее об этом чуть позднее. Остановимся на вопросе об уровне мощности. Сразу надо сказать, что ни в одном эксплуатационном, проектном или директивном документе по реактору РБМК нет даже намека на ограничение работать на какой-то мощности. Да это и не свойственно реакторам. В Регламенте прямо сказано, что длительность работы на минимально контролируемом уровне мощности не ограничивается. Тот же Регламент дает рекомендацию при отделении энергоблока от электрической системы снизить мощность реактора до величины, обеспечивающей нагрузку механизмов собственных нужд станции, а это те же 200 МВт, за которые нас и обвиняют. Поэтому нет никакого нарушения со стороны персонала, когда он начал снижать мощность. Кто бы ни распорядился делать это и почему. Я согласился с предложением Саши Акимова поднять мощность до 200 МВт после провала по очень простой причине: до 700 МВт, согласно Регламенту, надо подниматься не менее получаса, а у нас и работы на полчаса, мощность такая не нужна ни для замера вибрации турбины, ни для эксперимента по <Программе выбега ТГ> - по последней реактор вообще глушился. При работе на подводных лодках постоянно приходилось считать пусковое положение органов воздействия на реактивность, если после падения АЗ проходило какое-то время. Приходилось учитывать и отравление ксеноном, и другие эффекты реактивности. На реакторе РБМК с такой точностью расчет сделать невозможно, но прикинуть вполне допустимо. По моей прикидке, до половины второго снижения запаса реактивности менее 15 стержней быть не могло. И сейчас в этом уверен. Я же не ожидал подвоха со стороны станционного Отдела ядерной безопасности. Согласно требованиям нормативных документов Отдел периодически проводил измерения характеристик реактора, в том числе таких параметров, как паровой эффект реактивности (? ? ) и быстрый мошностной коэффициент реактивности (? N ). Вот последние данные, полученные оперативным персоналом для руководства в работе: ? ? =+1,29? и ? N -1,7-10 -4 ?/МВт. После аварии на других блоках станции измерили паровой эффект и получили ни много, ни мало ? ? =+5?. Разница большая, а отсюда и разница в воздействии на запас реактивности при пуске седьмого и восьмого ГЦН и при увеличении расхода питательной воды в сторону уменьшения запаса реактивности. Мощностной коэффициент реактивности Отдел ядерной безопасности измерял на мощности, близкой к номинальной, возможно, он там такой и был, какой нам выдавали. А как выяснили после аварии, на низких мощностях (с какой начиная, до сих пор Научный руководитель и Главный конструктор - их организации, не уточнили) реактор имел не отрицательный, а положительный мощностной коэффициент, причем так и до сих пор неизвестно какой величины. И при снижении мощности получили не увеличение запаса реактивности на один стержень, а неизвестно какое снижение. Поэтому прогноз изменения запаса оказался ошибочным. Знали или нет Научный руководитель и Главный конструктор реактора РБМК, что реактор в достаточно большом диапазоне мощности имел положительный мощностной коэффициент реактивности, сказать не берусь. Но что в практике это не учитывалось - точно. Станционный Отдел ядерной безопасности работал под их методическим руководством и, конечно, должен был измерять характеристики в наиболее неблагоприятных областях. Следовательно, Отдел подсказки от научных организаций не получил, а те, что получал, были, мягко говоря, не того качества. Ведь паровой эффект реактивности в 1,29 при действительном в 5 Отдел намерял по их методике. Создателям реактора было ясно отрицательное влияние большого парового эффекта реактивности на динамические свойства реактора. Вот что пишет в записке следователю Главный конструктор РБМК академик Н.А. Доллежаль: <В самом начале строительства канальных уран-графитовых реакторов, исходя из уровня знаний того времени (середины 60-х годов), активная зона реактора была спроектирована с использованием урана, обогащенного V-235 в 1,8%. Спустя некоторый срок эксплуатации первого реактора, стала очевидной целесообразность поднятия этого значения до 2 %, что позволило, в частности, в некоторой степени понизить отрицательное влияние парового коэффициента реактивности. Дальнейшее изучение всех параметров, характеризующих работу реактора, привело к выводу о целесообразности повышения обогащения урана до 2,4 %. Такие сборки с активными элементами изготовлены и удовлетворительно проходят представительные испытания на работающих канальных реакторах АЭС. При создании активной зоны реакторов на этом уровне обогащения урана по всем данным влияние парового коэффициента реактивности локализуется. До этого, т. е. при обогащении урана 2 %, это влияние регулируется постановкой в каналы специальных поглотителей (ДП), что строго и предусматривается в эксплуатационных инструкциях. Отступление от них недопустимо, так как делает реактор <неуправляемым> (разрядка моя - А. Д.) Полагаю, слово <неуправляемым> пояснения не требует. Реактор РБМК-1000 четвертого блока имел уран 2 % обогащения, ДП в активной зоне не имел, по определению Главного конструктора - неуправляем. Указаний в эксплуатационных инструкциях не было и появиться им неоткуда было - в проектных материалах Главный конструктор сообщить не обеспокоился. В отчете его НИКИЭТ, озаглавленном <Ядерная безопасность реакторов РБМК вторых очередей. Нейтронно-физические параметры>, паровой коэффициент реактивности не превышает 1(3, а мощностной коэффициент отрицательный. Ладно, это расчеты. Жизнь вносит коррективы. Активные зоны реакторов РБМК формировались по расчетам НИКИЭТ. Не указали в проектных материалах. Знали, что в таком виде он неуправляем, и все же делали. Именно положительный паровой коэффициент (эффект) реактивности недопустимо большой величины делал положительным мощностной коэффициент реактивности. Чем это плохо? У критичного реактора мощность удерживается на постоянном уровне. Если теперь каким-то способом (изменение расхода теплоносителя, питательной воды, давления первого контура) внесена положительная реактивность, то мощность начнет возрастать. В правильно спроектированном реакторе от увеличения мощности вносится отрицательная реактивность (отрицательный мощностной коэффициент), которая скомпенсирует ранее внесенную реактивность, и мощность установится на новом, более высоком уровне. В этом заключается принцип саморегулирования. У реактора РБМК, по крайней мере на малой мощности, мощностной коэффициент оказался положительным. Теперь увеличение мощности реактора вносит дополнительную положительную реактивность, реактор начинает увеличивать мощность с большей скоростью, что вызывает еще положительную реактивность и создаются условия для разгона реактора. Нельзя говорить, что такой реактор нисколько работать не может. Автоматический регулятор или оператор своими действиями могут удержать реактор от разгона. Но все это до поры до времени. При достижении избыточной реактивности величины р (доля запаздывающих нейтронов) реактор уже разгоняется на мгновенных нейтронах с очень большой скоростью, и ничто его не может спасти от разрушения. Экзотические исследовательские реакторы в расчет не принимаются. Нормативный документ ОПБ-82 так требует проектировать реакторы: СТАТЬЯ 2.2.2. ОПБ <Как правило, быстрый мощностной коэффициент реактивности не должен быть положительным при любых режимах работы АЭС и любых состояниях системы отвода тепла от теплоносителя первого контура. Если быстрый мощностной коэффициент реактивности положителен в каких-либо эксплуатационных режимах, в проекте должна быть обеспечена и обоснована безопасность реактора в стационарных, нестационарных и аварийных режимах>. Ну, при АЗ со скоростью действия 18...20 с (чемпион по медленнодействию) даже при нормальной конструкции стержней СУЗ говорить об обосновании безопасности при положительном мощностном коэффициенте не приходится. Аналогично и требование другого нормативного документа - ПБЯ-04-74. Можно констатировать. Имеем свидетельство Главного конструктора о знании, как делать безопасный реактор. Имеем требование нормативных документов. Сделано наоборот. В 00 часов 43 минуты вскоре после провала мощности реактора начальник смены блока А. Акимов заблокировал защиту реактора по останову двух ТГ. Проще всего было бы сказать, что согласно Регламенту Указанная защита выводится при мощности менее 100 МВт электрических, у нас было 40 МВт. И, следовательно, никакого нарушения нет. Но вышло оно. это нарушение, аж на международную арену, и потому надо пояснить. Эта защита при остановках блока чаще всего выводилась заранее, поскольку работа реактора требовалась еще некоторое время для выполнения каких-либо проверок. Если взять Регламент, то там тоже написано, что мощность реактора снижается АР и затем кнопкой АЗ-5 приводится в действие АЗ для глушения реактора. Это обычное и, главное, нормальное явление. Назначение этой защиты - предотвратить резкий рост давления в первом контуре, поскольку при остановке турбин они перестают потреблять пар. А при малой мощности турбины она и пару потребляет мало, и при остановке не от чего защищать реактор. Сколько мне пришлось писать по этой защите - даже и не знаю. И пусть бы она выведена была без нарушения требований эксплуатационных документов. Но вот вопрос: при введенной защите взрыва бы не было? Так нет же, никакого значения она не имела. После ареста, когда мне предъявили обвинение, я следователю указал пункт документа, что нет нарушения в блокировке защиты. Казалось бы, вопрос исчерпан. Не тут-то было. Пошло и в Обвинительное заключение и в Приговор. Судья задает вопрос свидетелю М. Ельшину. бывшему на смене 26 апреля, кто, по его мнению, вывел защиту? Тот отвечает, что согласно оперативной дисциплине, думаю, Акимов сам этого сделать. не мог. Логически далее следует - приказал Дятлов. Очень оживился судья и даже напомнил секретарю суда: <Обязательно запиши>. Хотя и странно, вроде бы, все должно записываться. Интересный феномен, как человек начинает мельтешить перед следователем, прокурором, судом. Особенно перед следователем, в суде все-таки люди присутствуют, а там -один на один. Не верьте рассказам тех, кто впервые под следствием, как они лихо отвечали следователю. Даже свидетели, которым ничего не грозит, не всегда сохраняют достоинство. Того же М. Ельшина разбуди в нормальной обстановке среди ночи и задай тот же вопрос. Ответ будет другой: защита заблокирована согласно Регламенту, а в этом случае начальник смены блока вправе не спрашивать ни у кого разрешения. Пусть не покажется странным, но ответ Ельшина, были и другие подобные, у меня вызвал удовлетворение, хотя вроде бы обвиняет меня, - значит, правильно учил персонал. В тот раз А. Акимов меня не спрашивал, а если бы и спросил, то я бы разрешил. Это нужно было сделать. После провала мощности реактора в 00 часов 28 минут начало снижаться давление в первом контуре. Для предотвращения глубокой просадки давления возможно понадобилось бы закрыть пар на турбину, но тогда бы сработала АЗ реактора. По этой же причине была изменена уставка защиты на остановку турбины по снижению давления в барабан-сепараторах (в первом контуре) с 55 атмосфер на 50. Эту уставку персонал выбирает по собственному усмотрению, специально ключи выведены на оперативную панель. Защиту никто не выводил. У судебно-технических экспертов и других это трансформировалось в блокировку АЗ реактора по давлению в первом контуре. Есть и такая зашита - действует на остановку реактора при повышении давления в первом контуре. Но она все время была введена. Как видим, действия персонала по <преступному> выводу АЗ на самом деле согласны с действующей эксплуатационной документацией, вызваны технической необходимостью и никоим боком не связаны с аварией. Еще одна АЗ реактора, в блокировке которой обвиняют персонал, -снижение уровня теплоносителя в барабан-сепараторах ниже минус 600 мм. Эта защита действует следующим образом: на большом уровне мощности реактора, более 60 % от номинального, она при снижении уровня автоматически уменьшает мощность реактора до 60 %. При малых мощностях - глушит реактор. Это изменение функций осуществляется с помощью ключа оперативным персоналом. После снижения мощности мы этого не сделали. Почему изменение функций не сделано автоматическое? Проектант это объясняет так: при снижениях мощности, например, по АЗ-2 до 50 % уровень в барабан-сепараторах обычно снижается ниже 600 мм и при автоматическом переключении произойдет полное глушение реактора. Поэтому надо дождаться стабилизации параметров и лишь после этого переключить. На малой мощности регуляторы питательной воды работают не очень хорошо, и 26 апреля после снижения мощности реактора уровень в сепараторах уменьшился до -600 мм. Был бы заглушен реактор при срабатывании защиты - неизвестно, потому что трудно сказать, когда защита стала неработоспособной. Даже будь точно известно: если бы АЗ по уровню была переключена, то при его отклонении в 01 час 00 минут реактор был бы благополучно заглушен - ни о чем не говорит. Работу реактора на <если> нельзя строить. Ведь не из-за отклонения уровня произошла авария, а совсем по другим причинам. Да и защита по снижению уровня теплоносителя в барабан-сепараторах до -1 100 мм оставалась введенной. Таким образом, аварийные зашиты реактора были в полном объеме для такого режима, кроме защиты по уровню в барабан-сепараторах -она была - 1 100 мм вместо - 600 мм. О включении всех восьми ГЦН. Не существовало никаких ограничений по максимуму расхода теплоносителя, было только на расход через отдельный технологический канал из условий вибрации топливной кассеты. Но до этого было далеко, ни одного сигнала превышения расхода воды через канал не было. Вся идеология Регламента и других документов основана на обеспечении минимума расхода теплоносителя во избежание кризиса кипения. Да, включается обычно шесть насосов (по три на сторону), и это понятно - зачем лишаться резерва, когда и трех достаточно. Технических причин, препятствующих включению четырех насосов на сторону, не видно. И в инструкции по эксплуатации реактора, согласованной с научными организациями, есть такие режимы: при замене ; одного насоса другим сначала включается четвертый и после этого останавливается намеченный, также при проверке отремонтированного насоса. Никакой самодеятельности не было, все основано на документах. Включение насосов произведено согласно <Программе выбега ТГ>, чтобы при выбеге генератора, после остановки четверки насосов, в работе осталась другая четверка, запитанная от резервной сети. Удивительным образом вот уже пять лет по многим документам кочует утверждение, что при большом расходе теплоносителя его температура на входе в активную зону сближается с температурой насыщения, при которой вскипает вода. И на этом основании делается вывод о теплогидравлической неустойчивости активной зоны. Неверно. Утверждение справедливо для всаса ГЦН, но не для входа в активную зону. Если неустойчивость и была, то это свойство, присущее активной зоне, а не вызванное персоналом. После провала мощности реактора из-за снижения гидравлического сопротивления расход у двух-трех ГЦН возрос и превышал разрешенный при таком количестве питательной воды. Могло эти насосы сорвать, то есть они прекратили бы подачу теплоносителя. Оператор среднего пульта Б. Столярчук занялся регулировкой уровня в барабан-сепараторах и не успел установить нужный расход ГЦН. При срыве даже трех из восьми насосов оставшихся вполне достаточно для снятия тепла при такой мощности. И объективно системой контроля зарегистрирована исправная работа всех насосов без признаков срыва и кавитации до самого взрыва реактора. Многочисленные судьи оперативного персонала утверждают, что персонал ради выполнения производственного задания шел на нарушения Регламента и эксплуатационных инструкций. Здесь я рассказал все, как было на БЩУ 26 апреля 1986 г. Как видим, практически никаких нарушений не было. Аварийные защиты, вопреки многим сообщениям, - согласно Регламенту для такого режима; параметры также. И нет причин для невыполнения задания. Конечно, мы стремились сделать работу - это же производственное задание, а не решение пионерского собрания. С другой стороны, выполнять любой ценой тоже никто не собирался. Персоналу это вообще незачем - никакой награды за выполнение, никакого взыскания при невыполнении. За мной также не наблюдалось легкомыслия. На этом четвертом блоке также при остановке на ремонт при выполнении первого пункта намеченной программы испытаний на мощности, близкой к номиналу, ложно сработала АЗ реактора по превышению давления в пером контуре. Сразу разобрались, все было исправлено. Но в этом случае согласно Регламенту перед падением защиты запас реактивности должен быть не менее 50 стержней - тогда можно снова поднять мощность. Такого запаса не было, и я, не задумываясь, распорядился расхолаживать реактор вовсе не выполнив остановочную программу. Здесь же все было выполнено кроме одного. Ну, сделали бы через сорок дней после ремонта. Причин из кожи вон лезть не было. Естественно, поступки наши надо оценивать не с колокольни теперешних знаний о реакторе, а исходя из действовавшей на то время документации с учетом уровня знаний о реакторе из всех доступных персоналу источников. Как отмечено выше, перед началом эксперимента по <Программе выбега ТГ> параметры реактора нормальные, на блоке нет ни предупредительных, ни аварийных сигналов. И все же бомба в полной готовности была уже в то время. Если бы мы по какой-то причине отказались проводить последний эксперимент и, как рекомендует Регламент, для глушения реактора нажали кнопку АЗ-5, то получили бы взрыв точно такой же. Аналогично было бы и при срабатывании АЗ по какому-либо сигналу. Ретроспективный взгляд показывает, что реакторы РБМК были в таком состоянии не один раз, и лишь острая грань отделяла от взрыва ранее. Оказывается, РБМК, как и все реакторы, ядерноопасен при большом запасе реактивности, но в отличие от всех остальных он еще более опасен при малом запасе реактивности. В книгах по реакторам о таком не говорится. А создатели РБМК, родив перевертыша, по стыдливости или по скромности умолчали об этом его свойстве. Впрочем, если бы они сообщили, то едва ли нашлись согласные эксплуатировать его. Главный конструктор академик Н.А. Доллежаль в уже упомянутом выше документе пишет: <Постоянное стремление создателей ядерного реактора к наивысшей его экономичности связано, в частности, с необходимостью возможно больше удалять из активной зоны элементы, вредно и паразитно поглощающие нейтроны. Среди прочих одним из таких элементов является вода, остающаяся в нижней части канала, занимаемого стержнем регулирования мощности, развиваемой реактором. Чтобы избежать этого влияния, некоторая нижняя часть стержня регулирования определенного строго рассчитанного размера (выделение мое - А.Д.,) делается из непоглощающего материала, вытесняя таким образом соответствующее количество воды в этом канале, которое в должной степени до этого было поглотителем>. То есть, что сделали конструкторы? К стержню из карбида бора, сильно поглощающего нейтроны, подвесили графитовый вытеснитель длиной 4,5 м. При поднятом поглотителе вытеснитель симметрично располагается; по высоте активной зоны, оставляя сверху и снизу в канале столбы воды по 1,25 м. Казалось бы, надо сделать вытеснитель на всю высоту (7 м) активной зоны, выигрыш больше. Но при симметричном вытеснителе нужно либо удлинять канал - помещение не позволяет, либо усложнять конструкцию стержней. А поскольку при работе реактора подавляющую часть времени нейтронное поле внизу и сверху относительно мало, то и выигрыш нейтронов невелик. Остановились на вытеснителе 4,5 м. И тут выясняется, что утверждение академика - <строго рассчитанного размера> - чистый блеф, действительности не соответствует. Считали или нет - не знаю, но о строгости говорить не приходится. При движении стержня из верхнего положения в верхнюю часть зоны входит поглотитель и вносит отрицательную реактивность, в нижней части канала графитовый вытеснитель замещает воду и вносит положительную реактивность. Оказывается, суммарная реактивность при нейтронном поле, смещенном вниз, вносится положительная в течение первых трех секунд движения стержня. Явление недопустимое. Наблюдалось оно на Игналинской станции, на Чернобыльской при физическом пуске реактора четвертого блока, но должной оценки у научных работников не получило. На этом фокусы 4,5-метрового вытеснителя не кончаются. Реактор РБМК геометрически и, что важнее, физически - большой. Отдельные его области могут вести себя почти как самостоятельные реакторы. При срабатывании АЗ, когда одновременно в зону идет большое количество стержней, в нижней части зоны создается стержнями локальная критическая масса. СТАТЬЯ 3.3.28. ПБЯ <Количество, расположение, эффективность и скорость введения исполнительных органов АЗ должны быть определены и обоснованы в проекте реактора, где должно быть показано, что при любых аварийных режимах исполнительные органы АЗ без одного наиболее эффективного органа обеспечивают: скорость аварийного снижения мощности реактора, достаточную для предотвращения возможного повреждения твэлов сверх допустимых пределов; приведение реактора в подкритическое состояние и поддержание его в этом состоянии...; - предотвращение образования локальных критических масс>. Стержни СУЗ реактора не только не предотвращали, но и сами создали критическую массу внизу активной зоны. Заместитель директора НИКИЭТ И.Я. Емельянов, под руководством которого создавался проект СУЗ. так это хладнокровно и академично, как на лекции в Баумановском училище, дает свидетельское показание: <Органы воздействия на реактивность должны проектироваться таким образом чтобы при движении их в одну сторону знак вносимой реактивности не изменялся>. Как будто не под его руководством созданы стержни с противоположными свойствами. Когда стержень СУЗ находится в промежуточном положении, вода из нижней части канала уже вытеснена и при движении стержня он сразу начинает вносить отрицательную реактивность. При большом запасе реактивности некоторое количество стержней находится в промежуточном положении и АЗ как-то справляется со своим назначением. При малом запасе большая часть стержней извлечена из зоны и при срабатывании АЗ, по сигналу или от кнопки, она может вносить положительную реактивность, согласно послеаварийным расчетам, величиной до одной бета. И только через 5...6 с, в аварийных условиях это целая вечность, защита начинает вносить отрицательную реактивность. СТАТЬЯ 3.3.5. ПБЯ <По крайней мере одна из предусмотренных систем воздействия на реактивность должна быть способна привести реактор в подкритическое состояние и поддерживать его в этом состоянии при любых нормальных и аварийных условиях и при условии несрабатывания одного наиболее эффективного органа воздействия на реактивность>. 26 апреля 1986 г. АЗ после нажатия кнопки, к сожалению (я не оговорился), сработала в полном объеме и взорвала реактор. При отказе части защиты аварии могло и не быть. Парадокс? Да. Но такова защита. Оперативный запас реактивности Обычно ОЗР необходим для возможности маневрирования мощностью. Сконструировать реактор с нулевым коэффициентом реактивности не представляется возможным, поэтому при изменениях режимов работы необходим какой-то запас реактивности. И по экономическим соображениям, и по условиям безопасности он должен быть минимальным. Вначале в проектных документах на реактор РБМК не накладывалось никаких ограничений на минимальный запас. В 1975 г. на первом блоке Ленинградской АЭС при выходе на мощность после срабатывания АЗ произошла авария с разрывом технологического канала из-за перегрева небольшой части активной зоны. Уменьшить в этой части мощность путем погружения стержней здесь и извлечения в других местах не представлялось возможным. Из-за отравления реактора ксеноном запаса реактивности не было.