\input style \chapno=5 \subchno=1 \subsubchno=1 \chapnotrue \excercises %%34 \ex[m23] iZVESTNO, CHTO V RAZLOZHENII OPREDELITELYA POLOVINA CHLENOV VYPISYVAETSYA SO ZNAKOM~$+$, A POLOVINA---SO ZNAKOM~$-$. dRUGIMI SLOVAMI, PRI $n\ge 2$ PERESTANOVOK S \emph{CHETNYM} CHISLOM INVERSIJ ROVNO STOLXKO ZHE, SKOLXKO S \emph{NECHETNYM}. pOKAZHITE, CHTO VOOBSHCHE PRI $n\ge m$ KOLICHESTVO PERESTANOVOK S CHISLOM INVERSIJ, KONGRU|NTNYM $t \bmod m$, RAVNO $n!/m$, NEZAVISIMO OT TOGO, KAKOVO CELOE CHISLO~$t$. \ex[m24] \exhead(f. fRANKLIN.) rAZBIENIE CHISLA~$n$ NA $k$~RAZLICHNYH CHASTEJ--- |TO PREDSTAVLENIE~$n$ V VIDE SUMMY $n=p_1+p_2+\cdots+p_k$, GDE $p_1>p_2>\ldots>p_k>0$. nAPRIMER, RAZBIENIYA CHISLA~7 NA RAZLICHNYE CHASTI TAKOVY: $7$, $6+1$, $5+2$, \picture{rIS. 2. sOOTVETSTVIE fRANKLINA MEZHDU RAZBIENIYAMI NA RAZLICHNYE CHASTI.} $4+3$, $4+2+1$. pUSTX $f_k(n)$---CHISLO RAZBIENIJ $n$ NA $k$~RAZLICHNYH CHASTEJ. dOKAZHITE, CHTO $\sum_k (-1)^k f_k(n)=0$, ESLI TOLXKO $n$ NE PREDSTAVLYAETSYA V VIDE~$(3j^2\pm j)/2$ PRI NEKOTOROM NEOTRICATELXNOM CELOM~$j$; V |TOM SLUCHAE SUMMA RAVNA $(-1)^j$. nAPRIMER, DLYA $n=7$ SUMMA RAVNA~$-1+3-1=1$, POTOMU CHTO $7=(3\cdot2^2+2)/2$. [\emph{uKAZANIE.} pREDSTAVXTE RAZBIENIYA V VIDE MASSIVA TOCHEK, V $i\hbox{-J}$ STROKE KOTOROGO IMEETSYA $p_i$~TOCHEK, $1\le i\le k$. nAJDITE NAIMENXSHEE~$j$, TAKOE, CHTO $p_{j+1}0$, I PREDPOLOZHIM, CHTO POSLEDOVATELXNOSTX $n\hbox{-BITOVYH}$ CELYH CHISEL $X_0$,~\dots, $X_{2^n-1}$ DLINY~$2^n$ POLUCHENA SLUCHAJNYM OBRAZOM, PRICHEM KAZHDYJ BIT KAZHDOGO CHISLA NEZAVISIMO PRINIMAET ZNACHENIE~1 S VEROYATNOSTXYU~$p$. rASSMOTRIM POSLEDOVATELXNOSTX $X_0\oplus0$, $X_1\oplus1$, ~\dots, $X_{2^n-1}\oplus(2^n-1)$, GDE $\oplus$---OPERACIYA "ISKLYUCHAYUSHCHEE ILI" NAD BINARNYMI PREDSTAVLENIYAMI. tAK, ESLI $p=0$, TO POSLEDOVATELXNOSTX BUDET $0$, $1$,~\dots, $2^n-1$, A ESLI $p= 1$, TO ONA BUDET $2^n- 1$, ~\dots, $1$, $0$; ESLI ZHE $p={1\over2}$, TO KAZHDYJ |LEMENT POSLEDOVATELXNOSTI---SLUCHAJNOE CHISLO MEZHDU~$0$ I~$2^n-1$. vOOBSHCHE ZHE PRI RAZNYH~$p$ |TO HOROSHIJ SPOSOB POLUCHENIYA POSLEDOVATELXNOSTI SLUCHAJNYH CELYH CHISEL SO SMESHCHENNYM CHISLOM INVERSIJ, V TO VREMYA KAK RASPREDELENIE |LEMENTOV POSLEDOVATELXNOSTI, RASSMATRIVAEMOJ KAK EDINOE CELOE, RAVNOMERNO. oPREDELITE SREDNEE CHISLO INVERSIJ V TAKOJ POSLEDOVATELXNOSTI KAK FUNKCIYU OT VEROYATNOSTI~$p$. \ex [M36] (d. fOATA.) dAJTE PRYAMOE DOKAZATELXSTVO TEOREMY mAK-mAGONA OB INDEKSAH: NAJDITE TOCHNOE VZAIMNO ODNOZNACHNOE SOOTVETSTVIE, KOTOROE PEREVODIT PERESTANOVKU $n$~|LEMENTOV, IMEYUSHCHUYU INDEKS~$k$, V PERESTANOVKU, IMEYUSHCHUYU $k$~INVERSIJ I TOT ZHE SAMYJ KRAJNIJ PRAVYJ |LEMENT. \ex[M43] sLEDUYUSHCHEE ZNAMENITOE TOZHDESTVO, PRINADLEZHASHCHEE yaKOBI [Fundamenta Nova Theori\ae{} Functionum Ellipticorum (1829), \S~64], LEZHIT V OSNOVE MNOGIH ZAMECHATELXNYH SOOTNOSHENIJ, SODERZHASHCHIH |LLIPTICHESKIE FUNKCII: $$ \eqalign{ \prod_{k\ge1}(1-u^kv^{k-1})&(1-u^{k-1}v^k)(1-u^kv^k)=\cr &=(1-u)(1-v)(1-uv)(1-u^2v)(1-uv^2)(1-u^2v^2)\ldots=\cr &=1-(u+v)+(u^3v+uv^3)-(u^6v^3+u^3v^6)+\cdots=\cr &=1+\sum_{n\ge1}(-1)^n(u^{(n+1)n/2}v^{(n-1)n/2}+u^{(n-1)n/2}v^{(n+1)n/2}).\cr } $$ eSLI, NAPRIMER, POLOZHITX $u=z$, $v=z^2$, TO POLUCHITSYA FORMULA eJLERA IZ UPR.~14. eSLI POLOZHITX $z=\sqrt{u/v}$, $q=\sqrt{uv}$, TO POLUCHIM $$ \prod_{k\ge1}(1-q^{2k-1}z)(1-q^{2k-1}z^{-1}(1-q^{2k})=\sum_{-\infty