\input style \noindent %% 41 CHTO LYUBOJ LEVYJ SOMNOZHITELX V RAZLOZHENII PERESTANOVKI (12), SODERZHASHCHIJ $a$, IMEET VID $(d\ d\ b\ c\ d\ b\ b\ c\ a)\T \alpha'$, GDE $\alpha'$--- NEKOTORAYA PERESTANOVKA. (uDOBNO ZAPISYVATX $a$ NE V NACHALE, A V KONCE CIKLA; |TO DOPUSTIMO, POSKOLXKU BUKVA $a$ TOLXKO ODNA.) aNALOGICHNO, ESLI BY MY PREDPOLOZHILI, CHTO $\alpha$ SODERZHIT BUKVU $b$, TO VYVELI BY, CHTO $\alpha=(c\ d\ d\ b) \T \alpha''$, GDE $\alpha''$---NEKOTORAYA PERESTANOVKA. v OBSHCHEM SLUCHAE |TI RASSUZHDENIYA POKAZYVAYUT, CHTO \emph{ESLI ESTX KAKOE-NIBUDX RAZLOZHENIE $\alpha\T\beta=\pi$, GDE $\alpha$ SODERZHIT DANNUYU BUKVU $y$, TO SUSHCHESTVUET EDINSTVENNYJ CIKL VIDA $$ (x_1\ \ldots\ x_n\ y), \qquad n\ge 0, x_1, \ldots, x_n\ne y, \eqno(14) $$ KOTORYJ YAVLYAETSYA LEVYM SOMNOZHITELEM V RAZLOZHENII PERESTANOVKI $\alpha$.} tAKOJ CIKL LEGKO OTYSKATX, ZNAYA $\pi$ I $y$; |TO SAMYJ KOROTKIJ LEVYJ SOMNOZHITELX V RAZLOZHENII PERESTANOVKI $\pi$, SODERZHASHCHIJ BUKVU $y$. oDNO IZ SLEDSTVIJ |TOGO NABLYUDENIYA DAET \proclaim tEOREMA A. pUSTX |LEMENTY MULXTIMNOZHESTVA $M$ LINEJNO UPORYADOCHENY OTNOSHENIEM "$<$". kAZHDAYA PERESTANOVKA $\pi$ MULXTIMNOZHESTVA $M$ IMEET EDINSTVENNOE PREDSTAVLENIE V VIDE SOEDINITELXNOGO PROIZVEDENIYA $$ \pi=(x_{11}\ldots x_{1n_1}y_1)\T(x_{21}\ldots x_{2n_2}y_2)\T \ldots (x_{t1}\ldots x_{tn_t}y_t), \quad t\ge 0, \eqno(15) $$ UDOVLETVORYAYUSHCHEE SLEDUYUSHCHIM DVUM USLOVIYAM: $$ \displaylines{ y_1\le y_2 \le \ldots \le y_t;\cr \hfill y_i0$ IZ (16) SLEDUET, CHTO $y_1$---MINIMALXNYJ |LEMENT PERESTANOVKI $\pi$ I CHTO $(x_{11}\ldots x_{1n_1}y_1$---SAMYJ KOROTKIJ %%42 LEVYJ SOMNOZHITELX, SODERZHASHCHIJ $y_1$. pO|TOMU $(x_{11}\ldots x_{1n_1} y_1)$ OPREDELYAETSYA ODNOZNACHNO; DOKAZATELXSTVO EDINSTVENNOSTI TAKOGO PREDSTAVLENIYA ZAVERSHAETSYA PRIMENENIEM INDUKCII I ZAKONOV SOKRASHCHENIYA (7). \proofend nAPRIMER, "KANONICHESKOE" RAZLOZHENIE PERESTANOVKI (12), UDOVLETVORYAYUSHCHEE DANNYM USLOVIYAM, TAKOVO: $$ (d\ d\ b\ c\ d\ b\ b\ c\ a)\T(b\ a)\T(c\ d\ b)\T(d), \eqno(17) $$ ESLI $a