\input style \chapnotrue\chapno=5\subchno=1\subsubchno=2 RAVNO CHISLU PERESTANOVOK |TIH CIKLOV (MULXTINOMIALXNOMU KO|FFICIENTU), PROSUMMIROVANNOMU PO VSEM ZNACHENIYAM~$k$: $$ \eqalignno{ N(A, B, C, m) &= \sum_k { (C+m-k)! \over (m-k)! (C-A+m-k)! (C-B+m-k)!k! (A+B-C-2m+k)!}=\cr &= \sum_k \perm{m}{k}\perm{A}{m}\perm{A-m}{C-B+m-k}\perm{C+m-k}{A}. &(25) \cr } $$ sRAVNIVAYA |TO S~(23), OBNARUZHIVAEM, CHTO DOLZHNO VYPOLNYATXSYA TOZHDESTVO $$ \sum_k \perm{m}{k} \perm{A-m}{C-B+m-k}\perm{C+m-k}{A}= \perm{B}{C-A+m}\perm{C}{B-m}. \eqno(26) $$ oKAZYVAETSYA, S |TIM TOZHDESTVOM MY VSTRECHALISX V UPR.~1.2.6-31: $$ \sum_j \perm{M-R+S}{j} \perm{N+R-S}{N-j}\perm{R+j}{M+N}= \perm{R}{M}\perm{S}{N}, \eqno(27) $$ GDE $M=A+B-C-m$, $N=C-B+m$, $R=B$, $S=C$, A~$j=C-B+m-k$. aNALOGICHNO MOZHNO PODSCHITATX CHISLO PERESTANOVOK MULXTIMNOZHESTVA~$\set{A\cdot a, B\cdot b, C\cdot c, D\cdot d}$, ESLI KOLICHESTVO STOLBCOV RAZLICHNYH TIPOV V NIH ZADANO SLEDUYUSHCHIM OBRAZOM: $$\let\ds=\displaystyle \matrix{ \hbox{sTOLBEC:}\hfill & a & a & b & b & c & c & d & d \cr & d & b & a & c & b & d & a & c \cr \hbox{kOLICHESTVO:}\hfill& r & A-r & q & B-q & B-A+r & D-r & A-q & D-A+q\cr } \eqno(28) $$ (zDESX~$A+C=B+D$.) vOZMOZHNYMI CIKLAMI V RAZLOZHENII TAKOJ PERESTANOVKI NA PROSTYE MNOZHITELI BUDUT $$ \matrix{ \hbox{cIKL:}\hfill & (a\, b) & (b\, c) & (c\, d) & (d\, a) & (a\, b\, c\, d) & (d\, c\, b\, a)\cr \hbox{kOLICHESTVO:}\hfill & A-r-s & B-q-s & D-r-s & A-q-s & s & q-A+r+s \cr } \eqno(29) $$ PRI NEKOTOROM~$s$ (SM.~UPR.~12). v |TOM SLUCHAE CIKLY~$(a\, b)$ I~$(c\,d)$ KOMMUTIRUYUT, TAK ZHE KAK I CIKLY~$(b\, c)$ I~$(d\,a)$, PO|TOMU NEOBHODIMO PODSCHITATX CHISLO RAZLICHNYH RAZLOZHENIJ NA PROSTYE MNOZHITELI. oKAZYVAETSYA (SM.~UPR.~10), VSEGDA SUSHCHESTVUET EDINSTVENNOE RAZLOZHENIE, TAKOE, CHTO CIKL~$(a\, b)$ NIKOGDA NE SLEDUET NEPOSREDSTVENNO ZA~$(c\, d)$, A~$(b\, c)$ NE VSTRECHAETSYA SRAZU POSLE~$(d\,a)$. %% 47 oTSYUDA, POLXZUYASX REZULXTATOM UPR.~13, POLUCHAEM TOZHDESTVO $$ \displaylines{ \sum_{s,t}\perm{B}{t}\perm{A-q-s}{A-r-s-t}\perm{B+D-r-s-t}{B-q-s}\times {D! \over (D-r-s)!(A-q-s)!s!(q-A+r+s)!}=\hfill\cr \hfill=\perm{A}{r}\perm{B+D-A}{D-r}\perm{B}{q}\perm{D}{A-q}.\cr } $$ vYNOSYA IZ OBEIH CHASTEJ MNOZHITELX~$\perm{D}{A-q}$ I SLEGKA UPROSHCHAYA FAKTORIALY, PRIHODIM K SLOZHNOMU NA VID PYATIPARAMETRICHESKOMU TOZHDESTVU BINOMIALXNYH KO|FFICIENTOV: $$ \sum_{s, t} \perm{B}{t}\perm{A-r-t}{s}\perm{B+D-r-s-t}{D+q-r-t}\times \perm{D-A+q}{D-r-s}\perm{A-q}{r+t-q}= \perm{A}{r}\perm{B+D-A}{D-r}\perm{B}{q}. \eqno(30) $$ pOLXZUYASX TOZHDESTVOM~(27), MOZHNO VYPOLNITX SUMMIROVANIE PO~$s$, A POLUCHIVSHAYASYA SUMMA PO~$t$ LEGKO VYCHISLYAETSYA. tAKIM OBRAZOM, . POSLE VSEJ PRODELANNOJ RABOTY NAM NE POSCHASTLIVILOSX OBNARUZHITX KAKOE-LIBO TOZHDESTVO, KOTOROE MY BY ESHCHE NE UMELI VYVODITX. nO MY PO KRAJNEJ MERE NAUCHILISX PODSCHITYVATX CHISLO PERESTANOVOK OPREDELENNOGO VIDA DVUMYA RAZLICHNYMI SPOSOBAMI, A |TI METODY PODSCHETA---HOROSHAYA PODGOTOVKA K RESHENIYU ZADACH, KOTORYE ESHCHE VPEREDI. \excercises \ex[m05] \emph{dA ILI NET?} pUSTX~$M_1$ I~$M_2$---MULXTIMNOZHESTVA. eSLI $\alpha$---PERESTANOVKA~$M_1$, A~$\beta$---PERESTANOVKA~$M_2$, TO~$\alpha\T \beta$---PERESTANOVKA~$M_1\cup M_2$. \ex[10] sOEDINITELXNOE PROIZVEDENIE PERESTANOVOK~$c\,a\,d\,a\,b$ I~$b\,d\,d\,a\,d$ VYCHISLENO V~(5); NAJDITE SOEDINITELXNOE PROIZVEDENIE~$b\,d\,d\,a\,d\T c\,a\,d\,a\,b$, KOTOROE POLUCHAETSYA, ESLI SOMNOZHITELI POMENYATX MESTAMI. \ex[m13] vERNO LI UTVERZHDENIE, OBRATNOE~(9)? iNACHE GOVORYA, ESLI PERESTANOVKI~$\alpha$ I~$\beta$ KOMMUTATIVNY OTNOSITELXNO OPERACII SOEDINITELXNOGO PROIZVEDENIYA, TO SLEDUET LI IZ |TOGO, CHTO ONI NE SODERZHAT OBSHCHIH BUKV? \ex[M11] kANONICHESKOE RAZLOZHENIE PERESTANOVKI~(12) V SMYSLE TEOREMY~A PRI~$aa_{j+1}$, TO \dfn{OTREZKAMI} BUDUT NAZYVATXSYA SEGMENTY, OGRANICHENNYE PARAMI CHERTOCHEK. nAPRIMER, V PERESTANOVKE $$ \vert 3\; 5\; 7\;\vert\;1\;6\; 8\; 9\;\vert\; 4\; 2\; $$ ---CHETYRE OTREZKA. mY NASHLI SREDNEE CHISLO OTREZKOV DLINY~$k$ V SLUCHAJNOJ PERESTANOVKE MNOZHESTVA~$\set{1, 2,~\ldots, n}$, A TAKZHE KOVARIACIYU CHISLA OTREZKOV DLINY~$j$ I DLINY~$k$. oTREZKI VAZHNY PRI IZUCHENII ALGORITMOV SORTIROVKI, TAK KAK ONI PREDSTAVLYAYUT %%51 UPORYADOCHENNYE SEGMENTY DANNYH. pO|TOMU-TO MY TEPERX VNOVX VERNEMSYA K VOPROSU OB OTREZKAH. oBOZNACHIM CHEREZ $$ \eul{n}{k} \eqno(1) $$ CHISLO PERESTANOVOK MNOZHESTVA~$\set{1, 2,~\ldots, n}$, IMEYUSHCHIH ROVNO~$k$ VOZRASTAYUSHCHIH OTREZKOV. tAKIE CHISLA~$\eul{n}{k}$ VOZNIKAYUT I V DRUGIH KONTEKSTAH; IH OBYCHNO NAZYVAYUT \dfn{CHISLAMI eJLERA,} POTOMU CHTO eJLER OBSUDIL IH V SVOEJ ZNAMENITOJ KNIGE Institutiones calculi differentialis (St.~Petersburg, 1755), 485--487 [Euler, {\sl Opera Omnia,\/} (1) {\bf 10} (1913), 373--375]; IH SLEDUET OTLICHATX OT "|JLEROVYH CHISEL", O KOTORYH IDET RECHX V UPR.~5.1.4-22. iZ LYUBOJ DANNOJ PERESTANOVKI MNOZHESTVA~$\set{1, 2,~\ldots, n-1}$ MOZHNO OBRAZOVATX $n$~NOVYH PERESTANOVOK, VSTAVLYAYA |LEMENT~$n$ VO VSE VOZMOZHNYE MESTA. eSLI V ISHODNOJ PERESTANOVKE SODERZHALOSX $k$~OTREZKOV, TO ROVNO $k$~NOVYH PERESTANOVOK BUDUT IMETX $k$~OTREZKOV; V OSTALXNYH $n-k$~PERESTANOVKAH BUDET PO $k+1$~OTREZKOV, POSKOLXKU VSYAKIJ RAZ, KOGDA $n$~VSTAVLYAETSYA NE V KONEC UZHE SUSHCHESTVUYUSHCHEGO OTREZKA, CHISLO OTREZKOV UVELICHIVAETSYA NA EDINICU. nAPRIMER, SREDI SHESTI PERESTANOVOK, POLUCHENNYH IZ PERESTANOVKI~$3\,1\,2\,4\,5$, $$ \matrix{ 6\,3\,1\,2\,4\,5, & 3\,6\,1\,2\,4\,5, & 3\,1\,6\,2\,4\,5,\cr 3\,1\,2\,6\,4\,5, & 3\,1\,2\,4\,6\,5, & 3\,1\,2\,4\,5\,6;\cr } $$ VSE, KROME VTOROJ I POSLEDNEJ, SODERZHAT PO TRI OTREZKA VMESTO ISHODNYH DVUH. oTSYUDA IMEEM REKURRENTNOE SOOTNOSHENIE $$ \eul{n}{k}=k\eul{n-1}{k}+(n-k+1)\eul{n-1}{k-1}, \rem{GDE $n$~CELOE, $n\ge 1$; $k$~CELOE.} \eqno (2) $$ uSLOVIMSYA, CHTO $$ \eul{0}{k}=\delta_{1k}, \eqno(3) $$ T.~E.~BUDEM SCHITATX, CHTO V PUSTOJ PERESTANOVKE SODERZHITSYA ODIN OTREZOK. chITATELX, VOZMOZHNO, NAJDET NEBEZYNTERESNYM SRAVNITX~(2) S REKURRENTNYM SOOTNOSHENIEM DLYA CHISEL sTIRLINGA [FORMULY~(1.2.6-42)]. v TABL.~1 PRIVEDENY CHISLA eJLERA DLYA MALYH~$n$. v TABL.~1 MOZHNO ZAMETITX NEKOTORYE ZAKONOMERNOSTI. pO OPREDELENIYU IMEEM $$ \eqalignno{ & \eul{n}{0}+\eul{n}{1}+\cdots+\eul{n}{n}=n!; & (4)\cr & \eul{n}{0}=0, \quad \eul{n}{1}=1; & (5) \cr & \eul{n}{n}=1 \rem{PRI $n\ge 1$.} & (6) \cr } $$ %% 52 \htable{tABLICA~1}% {chISLA eJLERA}% {\hfil$#$&&\bskip\hfil$\displaystyle #$\bskip\cr n & \eul{n}{0} &\eul{n}{1} &\eul{n}{2} &\eul{n}{3} &\eul{n}{4} &\eul{n}{5} &\eul{n}{6} &\eul{n}{7}\cr \noalign{\hrule} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \cr 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \cr 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \cr 3 & 0 & 1 & 4 & 1 & 0 & 0 & 0 & 0 \cr 4 & 0 & 1 & 11 & 11 & 1 & 0 & 0 & 0 \cr 5 & 0 & 1 & 26 & 66 & 26 & 1 & 0 & 0 \cr 6 & 0 & 1 & 57 & 302 & 302 & 57 & 1 & 0 \cr 7 & 0 & 1 & 120 & 1191 & 2416 & 1191 & 120 & 1 \cr \noalign{\hrule} } vYPOLNYAETSYA TAKZHE SVOJSTVO SIMMETRII $$ \eul{n}{k}=\eul{n}{n+1-k}, \rem{$n\ge1$,} \eqno(7) $$ KOTOROE VYTEKAET IZ TOGO FAKTA, CHTO KAZHDOJ PERESTANOVKE~$a_1\,a_2\,\ldots{}\,a_n$, SODERZHASHCHEJ $k$~OTREZKOV, SOOTVETSTVUET PERESTANOVKA~$a_n\,\ldots{}a_2\,a_1$, SODERZHASHCHAYA $n+1-k$~OTREZKOV. dRUGOE VAZHNOE SVOJSTVO CHISEL eJLERA VYRAZHAETSYA FORMULOJ $$ \sum_k \eul{n}{k}\perm{m+k-1}{n}=m^n, \rem{$n\ge0$,} \eqno(8) $$ KOTORUYU MOZHNO DOKAZATX, ISPOLXZUYA PONYATIE SORTIROVKI. rASSMOTRIM $m^n$~POSLEDOVATELXNOSTEJ $a_1\,a_2\ldots{}a_n$, GDE~$1\le a_i \le m$. lYUBUYU TAKUYU POSLEDOVATELXNOSTX MOZHNO USTOJCHIVO OTSORTIROVATX TAKIM OBRAZOM, CHTOBY |LEMENTY RASPOLOZHILISX V NEUBYVAYUSHCHEM PORYADKE: $$ a_{i_1}\le a_{i_2}\le \ldots \le a_{i_n}, \eqno(9) $$ GDE~$i_1\,i_2\,\ldots{}\,i_n$---ODNOZNACHNO OPREDELENNAYA PERESTANOVKA MNOZHESTVA~$\set{1, 2,~\ldots, n}$, TAKAYA, CHTO~$i_ji_{j+1}$ SLEDUET~$a_{i_j}L_k$; NA SAMOM ZHE DELE ZNACHENIYA KOLEBLYUTSYA, TO VOZRASTAYA, TO UBYVAYA. zAMETIM, CHTO~$L_k$ BYSTRO PRIBLIZHAYUTSYA K PREDELXNOMU ZNACHENIYU~2; VESXMA PRIMECHATELXNO TO, CHTO |TI NORMIROVANNYE POLINOMY OT TRANSCENDENTNOGO CHISLA~$e$ TAK BYSTRO SHODYATSYA K RACIONALXNOMU CHISLU~2! pOLINOMY~(26) PREDSTAVLYAYUT NEKOTORYJ INTERES I S TOCHKI ZRENIYA CHISLENNOGO ANALIZA, BUDUCHI PREKRASNYM PRIMEROM POTERI ZNACHASHCHIH CIFR PRI VYCHITANII POCHTI RAVNYH CHISEL; ISPOLXZUYA 19-ZNACHNUYU ARIFMETIKU S PLAVAYUSHCHEJ TOCHKOJ, g|SSNER PRISHLA K NEVERNOMU ZAKLYUCHENIYU O TOM, CHTO~$L_{12}>2$, A rENCH OTMETIL, CHTO 42-ZNACHNAYA ARIFMETIKA \htable{tABLICA~2}% {sREDNIE DLINY OTREZKOV}% {\hfil$#$\hfil&\hfil\bskip$#$\hfil\hskip 1cm & \hfil$#$\hfil&\hfil\bskip$#$\hfil\cr k & L_k & k & L_k \cr \noalign{\hrule} 1& 1.71828\,18284\,59045+ & 10 & 2.00000\,00012\,05997+\cr 2& 1.95249\,24420\,12560- & 11 & 2.00000\,00001\,93672+\cr 3& 1.99579\,13690\,84285- & 12 & 1.99999\,99999\,99909+\cr 4& 2.00003\,88504\,76806- & 13 & 1.99999\,99999\,97022-\cr 5& 2.00005\,75785\,89716+ & 14 & 1.99999\,99999\,99719+\cr 6& 2.00000\,50727\,55710- & 15 & 2.00000\,00000\,00019+\cr 7& 1.99999\,96401\,44022+ & 16 & 2.00000\,00000\,00006+\cr 8& 1.99999\,98889\,04744+ & 17 & 2.00000\,00000\,00000+\cr 9& 1.99999\,99948\,43434- & 18 & 2.00000\,00000\,00000-\cr \noalign{\hrule} } %%58 S PLAVAYUSHCHEJ TOCHKOJ DAET~$L_{28}$ LISHX S TOCHNOSTXYU DO 29~ZNACHASHCHIH CIFR. aSIMPTOTICHESKOE POVEDENIE~$L_k$ MOZHNO OPREDELITX, ISHODYA IZ PROSTYH POLOZHENIJ TEORII FUNKCIJ KOMPLEKSNOGO PEREMENNOGO. \picture{rIS.~3 kORNI URAVNENIYA~$e^{z-1}=z$. pUNKTIRNAYA LINIYA SOOTVETSTVUET URAVNENIYU~$e^{x-1}\cos y = x$, SPLOSHNAYA LINIYA---URAVNENIYU~$e^{x-1}\sin y = y$. } zNAMENATELX V~(25) OBRASHCHAETSYA V NULX LISHX PRI~$e^{z-1}=z$, T.~E.\ (POLAGAYA~$z=x+iy$) KOGDA $$ e^{x-1}\cos y = x \rand e^{x-1}\sin y =y. \eqno(27) $$ nA RIS.~3, GDE NANESENY OBA GRAFIKA |TIH URAVNENIJ, VIDNO, CHTO ONI PERESEKAYUTSYA V TOCHKAH~$z=z_0$, $z_1$, $\bar z_1$, $z_2$, $\bar z_2$,~\dots; ZDESX~$z_0=1$, $$ z_1= (3.08884\,30156\,13044-)+(7.46148\,92856\,54255-)i \eqno (28) $$ I PRI BOLXSHIH~$k$ MNIMAYA CHASTX~$\Im(z_{k+1})$ RAVNA PRIBLIZITELXNO~$\Im(z_k)+2\pi$. %% 59 tAK KAK $$ \lim_{z\to z_k} \left({1-z \over e^{z-1}-z}\right)(z-z_k)=-1 \rem{PRI~$k>0$} $$ I |TOT PREDEL RAVEN~$-2$ PRI~$k=0$, TO FUNKCIYA $$ R_m(z)=L(z)+{2\over z-z_0}+{z_1\over z-z_1}+{\bar z_1 \over z-\bar z_1} +{z_2\over z-z_2}+{\bar z_2 \over z-\bar z_2}+\cdots+{z_m \over z-z_m} +{\bar z_m \over z-\bar z_m} $$ NE IMEET OSOBENNOSTEJ V KOMPLEKSNOJ PLOSKOSTI PRI~$\abs{z}<\abs{z_{m+1}}$. zNACHIT, $R_m(z)$ MOZHNO RAZLOZHITX V STEPENNOJ RYAD~$\sum_k \rho_k z^k$, KoTopYJ SHODITSYA ABSOLYUTNO PRI~$\abs{z}<\abs{z_{m+1}}$; OTSYUDA SLEDUET, CHTO~$\rho_k M^k \to 0$ PRI~$k\to\infty$, GDE~$M=\abs{z_{m+1}}-\varepsilon$. kO|FFICIENTAMI DLYA~$L(z)$ SLUZHAT KO|FFICIENTY RAZLOZHENIYA FUNKCII $$ {2\over 1-z}+{1\over 1-z/z_1}+{1\over z/\bar z_1}+\cdots +{1\over z-z/z_m}+{1\over z-z/\bar z_m}+R_m z, $$ A IMENNO $$ L_n= 2+2r_1^{-n}\cos n\theta_1+2r_2^{-n}\cos n\theta_2 +\cdots+2r_m^{-n}\cos n\theta_m + O(r_{m+1}^{-n}), \eqno (29) $$ ESLI POLOZHITX $$ z_k=r_k e^{i\theta_k}. \eqno (30) $$ oTSYUDA MOZHNO PROSLEDITX ASIMPTOTICHESKOE POVEDENIE~$L_n$. iMEEM $$ \displaynarrow{ \eqalign{ r_1 &= 8.07556\,64528\,89526-,\cr \theta_1 &= 1.17830\,39784\,74668+;\cr }\cr \eqalign{ r_2 &= 14.35457-,\cr r_3 &= 20.62073+,\cr r_4 &= 26.88795+,\cr } \qquad \eqalign{ \theta_2 &=1.31269-;\cr \theta_3 &= 1.37428-;\cr \theta_4 &= 1.41050-;\cr }\cr } \eqno(31) $$ TAKIM OBRAZOM, GLAVNYJ VKLAD V~$L_n-2$ DAYUT~$r_1$ I~$\theta_1$, I RYAD~(29) SHODITSYA OCHENX BYSTRO. pRIVEDENNYE ZDESX ZNACHENIYA~$r_1$ I~$\theta_1$ NAJDENY dZH.~u.~rENCHEM~(ML.) dALXNEJSHIJ ANALIZ [W.~W.~Hooker, {\sl CACM,\/} {\bf 12} (1969), 411--413] POKAZYVAET, CHTO~$R_m(z)\to -z$ PRI~$m\to\infty$; SLEDOVATELXNO, RYAD~$2\sum_{k\ge 0} z_k^{-n}\cos n\theta_k$ DEJSTVITELXNO \emph{SHODITSYA} K~$L_n$ PRI~$n>1$. mOZHNO PROVESTI BOLEE TSHCHATELXNOE ISSLEDOVANIE VEROYATNOSTEJ, CHTOBY POLNOSTXYU OPREDELITX RASPREDELENIE VEROYATNOSTEJ DLYA DLINY $k\hbox{-GO}$~OTREZKA I DLYA OBSHCHEJ DLINY PERVYH~$k$ OTREZKOV (SM.~UPR.~9, 10, 11), oKAZYVAETSYA SUMMA~$L_1+\cdots+L_k$ ASIMPTOTICHESKI PRIBLIZHAETSYA K~$2k-1/3$. %% 60 v ZAKLYUCHENIE |TOGO PUNKTA RASSMOTRIM SVOJSTVA OTREZKOV V SLUCHAE, KOGDA V PERESTANOVKE DOPUSKAYUTSYA ODINAKOVYE |LEMENTY. bESCHISLENNYE PASXYANSY, KOTORYM POSVYASHCHAL SVOI DOSUGI ZNAMENITYJ AMERIKANSKIJ ASTRONOM 19-GO VEKA sAJMON nXYUKOMB, IMEYUT NEPOSREDSTVENNOE OTNOSHENIE K INTERESUYUSHCHEMU NAS VOPROSU. oN BRAL KOLODU KART I SKLADYVAL IH V ODNU STOPKU DO TEH POR, POKA ONI SHLI V NEUBYVAYUSHCHEM PORYADKE PO STARSHINSTVU; KAK TOLXKO SLEDUYUSHCHAYA KARTA OKAZYVALASX MLADSHE PREDYDUSHCHEJ, ON NACHINAL NOVUYU STOPKU. oN HOTEL NAJTI VEROYATNOSTX TOGO, CHTO V REZULXTATE VSYA KOLODA OKAZHETSYA RAZLOZHENNOJ V ZADANNOE KOLICHESTVO STOPOK. zADACHA sAJMONA nXYUKOMBA SOSTOIT, SLEDOVATELXNO, V NAHOZHDENII RASPREDELENIYA VEROYATNOSTEJ DLYA OTREZKOV SLUCHAJNOJ PERESTANOVKI MULXTIMNOZHESTVA. v OBSHCHEM SLUCHAE OTVET DOVOLXNO SLOZHEN (SM. UPR.~12), HOTYA MY UZHE VIDELI, KAK RESHATX ZADACHU V CHASTNOM SLUCHAE, KOGDA VSE KARTY RAZLICHNY PO STARSHINSTVU. mY UDOVLETVORIMSYA ZDESX VYVODOM FORMULY DLYA \emph{SREDNEGO} CHISLA STOPOK V |TOM PASXYANSE. pUSTX IMEETSYA $m$ RAZLICHNYH TIPOV KART I KAZHDAYA VSTRECHAETSYA ROVNO $p$ RAZ. nAPRIMER, V OBYCHNOJ KOLODE DLYA BRIDZHA $m=13$, A $p=4$, ESLI PRENEBREGATX RAZLICHIEM MASTI. zAMECHATELXNUYU SIMMETRIYU OBNARUZHIL V |TOM SLUCHAE p.~a.~mAK-mAGON [Combinatory Analysis (Cambridge, 1915), TOM~1, STR.~212--213]: CHISLO PERESTANOVOK S $k+1$~OTREZKAMI RAVNO CHISLU PERESTANOVOK S $mp-p-k+1$~OTREZKAMI. eTO SOOTNOSHENIE LEGKO PROVERITX PRI~$p=1$ (FORMULA (7)), ODNAKO PRI $p > 1$ ONO KAZHETSYA DOVOLXNO NEOZHIDANNYM. mOZHNO DOKAZATX |TO SVOJSTVO SIMMETRII, USTANOVIV VZAIMNO ODNOZNACHNOE SOOTVETSTVIE MEZHDU PERESTANOVKAMI, TAKOE, CHTO KAZHDOJ PERESTANOVKE S $k+1$ OTREZKAMI SOOTVETSTVUET DRUGAYA, S $mp-p-k+1$~OTREZKAMI. mY NASTOJCHIVO REKOMENDUEM CHITATELYU SAMOMU POPROBOVATX NAJTI TAKOE SOOTVETSTVIE, PREZHDE CHEM DVIGATXSYA DALXSHE. kAKOGO-NIBUDX OCHENX PROSTOGO SOOTVETSTVIYA NA UM NE PRIHODIT; DOKAZATELXSTVO mAK-mAGONA OSNOVANO NA PROIZVODYASHCHIH FUNKCIYAH, A NE NA KOMBINATORNOM POSTROENII. oDNAKO USTANOVLENNOE fOATOJ SOOTVETSTVIE (TEOREMA~5.1.2v) POZVOLYAET UPROSTITX ZADACHU, TAK KAK TAM UTVERZHDAETSYA SUSHCHESTVOVANIE VZAIMNO ODNOZNACHNOGO SOOTVETSTVIYA MEZHDU PERESTANOVKAMI S $k+1$~OTREZKAMI I PERESTANOVKAMI, V DVUSTROCHNOM PREDSTAVLENII KOTORYH SODERZHITSYA ROVNO $k$~STOLBCOV $y\atop x$, TAKIH, CHTO $x