\input style \chapnotrue\chapno=4\subchno=2\subsubchno=2 {\sl sLUCHAJ~1:\/}~$e_w=e_u$. (sM.~RIS.~4~(i).) zDESX~$U+V=W+R$, GDE \EQ{ R\equiv V \pmod{b^d}, \qquad -{1\over 2}b^d \le R < {1 \over 2}b^d. } iMEEM~$U'=\round(W-V, p) = \round(U-R, p)$. dALEE VOZMOZHNY DVA PODSLUCHAYA. {\sl sLUCHAJ~(1a):\/}~$R=-{1\over 2}b^d$. tOGDA~$U'=U+b^d$, \ctable{ # & # & # \cr \fpalignex(i){u&u&u&u&u&u&u&u&0&0}{&&v&v&v&v&v&v&v&v}{w&w&w&w&w&w&w&w&0&0} & \fpalignex(ii){u&u&u&u&u&u&u&u&0&0}{&&v&v&v&v&v&v&v&v}{w&w&w&w&w&w&w&0&0&0} & \fpalignex(iii){u&u&u&u&u&u&u&u&0&0}{&&v&v&v&v&v&v&v&v}{w&w&w&w&w&w&w&w&w&0} \cr } \picture{rIS.~4.~ vOZMOZHNYE SLUCHAI VYRAVNIVANIYA POZICIONNOJ TOCHKI PRI SLOZHENII.} \noindent $V'=V-R$, $U''=U$, $V''=V-R-b^d = V-{1\over2}b^d$. {\sl sLUCHAJ~(1b):\/}~$R\ne -{1\over 2}b^d$. tOGDA~$U'=U$, $V'=V-R$, $U''=U$, $V''=V-R$. {\sl sLUCHAJ~2:\/}~$e_w=e_u+1$. (sM.~RIS.~4~(ii).) yaSNO, CHTO~$V>0$ I~$d\le p$. iMEEM~$U+V=W+R$, GDE \EQ{ R\equiv V+b^d U_0 \pmod{b^{d+1}}, \qquad -{1\over2}\le R < {1\over 2}b^{d+1}, } a~$U_0$---NAIMENEE ZNACHIMAYA CIFRA~$f_u$. sNOVA RASSMOTRIM PODSLUCHAI. {\sl sLUCHAJ~(2a):\/}~$U-R\ge b^{d+p}-{1\over2}b^d$. tAK KAK~$U-R \le b^{d+p}-b^d+{1\over 2}b^{d+1}$, DOLZHNO VYPOLNYATXSYA RAVENSTVO~$U'=b^{d+p}=U-R+Q$, GDE~ \EQ{ Q\equiv V \pmod{b^{d+1}}, \qquad -{1\over2}b^{d+1}U-R\ge b^{d+p-1}-{1\over 2}b^{d-1}$. tOGDA~$U'=U-R+Q$, GDE \EQ{ Q\equiv V \pmod{b^d}, \qquad -{1\over 2}b^dU-R$. eTOT SLUCHAJ NEVOZMOZHEN. eTO OCHEVIDNO, KOGDA~$d=0$. a ESLI~$d>0$, TO~$R>0$, TAK CHTO~$U+V>W$ I~$U-R\ge W-V-R+1>b^{d+p}-(b^p-1)-{1\over2}b^{d+1}+1\ge b^{d+p-1}$, I MY PRIHODIM K PROTIVORECHIYU. %% 252 chTOBY, NAKONEC, ZAVERSHITX ANALIZ SLUCHAYA~2, MY DOLZHNY VYCHISLITX~$V'=\round(V-R, p)$. zDESX $V-R$~SODERZHIT NE BOLEE $p+1$~RAZRYADOV, PRICHEM $d$~NAIMENEE ZNACHIMYH CIFR RAVNY NULYU, TAK CHTO ESLI~$d\ne 0$, TO~$V'=V-R$, $U''=U$. eSLI ZHE~$d=0$, TO OBYAZATELXNO~$V'=V-R$, ZA ISKLYUCHENIEM TOGO SLUCHAYA, KOGDA~$V'=b^{p+d}$, I V |TOM POSLEDNEM SLUCHAE IMEET MESTO TA NEOBYCHNAYA SITUACIYA, KOGDA $W$~PRINIMAET SVOE MAKSIMALXNOE ZNACHENIE~$2b^{p+d}$; ZDESX~$U''=b^{p+d}$ I~$b>3$. {\sl sLUCHAJ~3:\/}~$e_w1$. tOGDA~$e_w=e_u-1$ I~$U+V=W+R$, GDE \EQ{ R \equiv V \pmod{b^{d-1}}, \quad -{1\over 2}b^{d-1}\le R < {1\over2}b^{d-1}. } eTOT SLUCHAJ ANALOGICHEN SLUCHAYU~1, NO PROSHCHE, VVIDU TOGO CHTO INTERVAL IZMENENIYA~$R$ MENXSHE. iMEEM~$U'=U$, $V'=V-R$, $U''=U$, $V''=V-R$. \endmark tEOREMA~A VYYAVLYAET NEKOE SVOJSTVO REGULYARNOSTI OPERACII SLOZHENIYA V SISTEME PLAVAYUSHCHEJ TOCHKOJ, NO ONA NE PREDSTAVLYAETSYA OSOBENNO POLEZNYM REZULXTATOM. sLEDUYUSHCHAYA TEOREMA GORAZDO BOLEE SUSHCHESTVENNA. \proclaim tEOREMA~B. v PREDPOLOZHENIYAH TEOREMY~A I PRI USLOVII~\eqref[43] SPRAVEDLIVO TOZHDESTVO \EQ[48]{ u+v = (u\oplus v) + ((u\ominus u') \oplus (v\ominus v'')). } \proof rASSMATRIVAYA KAZHDYJ IZ SLUCHAEV, VOZNIKSHIH PRI DOKAZATELXSTVE TEOREMY~A, MY NEIZMENNO OBNARUZHIVAEM, CHTO \EQ{ \eqalign{ u\ominus u' = u-u', & \quad v\ominus v' = v-v',\cr u\ominus u'' = u-u'', & \quad v\ominus v'' = v-v'',\cr ((u\ominus u') \oplus (v \ominus v'')) &= ((u-u')+(v-v''))=\cr &= ((u-u'')+(v-v'))=\cr &= ((u\ominus u'')\oplus (v\ominus v')),\cr } } POSKOLXKU KAZHDUYU IZ |TIH VELICHIN MOZHNO TOCHNO VYRAZITX KAK $p\hbox{-RAZRYADNOE}$ CHISLO S PLAVAYUSHCHEJ TOCHKOJ, BEZ VSYAKOGO OKRUGLENIYA. nAPRIMER, V SLUCHAE~2 IMEEM~$U-U'=R-Q \equiv O \pmod{b^d}$, I VO VSYAKOM SLUCHAE~$\abs{R}0$ S TEM LISHX OTLICHIEM, CHTO VELICHINA~$1\over2$, FIGURIRUYUSHCHAYA V~\eqref[9], ZAMENYAETSYA NULEM. tEOREMOJ~B NE OHVATYVALISX BY TOGDA SLUCHAI TIPA, NAPRIMER, \EQ{ (20, +.10000001)\oplus (10, -.10000001)=(20, +.10000000), } KOGDA RAZNOSTX MEZHDU~$u+v$ I~$u\oplus v$ NELXZYA BYLO BY TOCHNO VYRAZITX KAK CHISLO S PLAVAYUSHCHEJ TOCHKOJ. eSLI BY UREZANIE PROIZVODILOSX KAKIM-LIBO INYM SPOSOBOM, TO PRI ISPOLXZOVANII TAKOGO UREZANIYA V SREDNEJ CHASTI ALGORITMA~4.2.1A BEZ OGRANICHENIJ NEZAVISIMO OT ZNAKA CHISEL MOGLO BY SLUCHITXSYA, CHTO TEOREMY~A I~B OSTALISX VERNYMI, NO POLUCHAYUSHCHAYASYA PRI |TOM OPERACIYA~$\oplus$ OKAZALASX BY MNOGO MENEE DOSTUPNOJ DLYA MATEMATICHESKOGO ANALIZA. mNOGIE DUMAYUT, CHTO, POSKOLXKU "PLAVAYUSHCHAYA ARIFMETIKA" NETOCHNA PO SAMOJ SVOEJ PRIRODE, NE BUDET NIKAKOJ BEDY V TOM, CHTOBY V NEKOTORYH DOVOLXNO REDKIH SLUCHAYAH VYPOLNYATX EE OPERACII CHUTX MENEE TOCHNO, ESLI |TO OKAZHETSYA UDOBNYM. tAKAYA POLITIKA SBEREGAET NESKOLXKO CENTOV PRI PROEKTIROVANII evm ILI NEBOLXSHOJ PROCENT OBSHCHEGO VREMENI RABOTY PODPROGRAMMY. oDNAKO PROVEDENNOE NAMI VYSHE ISSLEDOVANIE POKAZYVAET, CHTO TAKOJ PODHOD OSHIBOCHEN. dAZHE PRI USLOVII, CHTO SKOROSTX PODPROGRAMMY~|FADD| PROGRAMMY~4.2.1A, ESLI BY MY DOPUSTILI VOZMOZHNOSTX NEVERNOGO OKRUGLENIYA V NEBOLXSHOM CHISLE SLUCHAEV, VOZROSLA BY, SKAZHEM, NA PYATX PROCENTOV, VSE RAVNO GORAZDO LUCHSHE OSTAVITX EE TAKOJ, KAK ONA ESTX. i DELO ZDESX NE V "POGONE ZA BITAMI" I NE V TOM, CHTOBY V SREDNEJ PROGRAMME POLUCHATX FANTASTICHESKI HOROSHIE REZULXTATY; NA KARTU POSTAVLENO NECHTO BOLEE VAZHNOE I FUNDAMENTALXNOE: \emph{CHISLOVYE PODPROGRAMMY %% 254 DOLZHNY DAVATX REZULXTATY, KOTORYE, NASKOLXKO |TO VOZMOZHNO UDOVLETVORYAYUT PROSTYM POLEZNYM MATEMATICHESKIM ZAKONAM.} kLYUCHEVAYA FORMULA~$u\oplus v = \round(u+v, p)$, NAPRIMER, VYRAZHAET NEKOE SVOJSTVO "REGULYARNOSTI", I |TIM RESHAETSYA VOPROS, STOIT PROVODITX MATEMATICHESKIJ ANALIZ VYCHISLITELXNYH ALGORITMOV ILI NE STOIT. nE RASPOLAGAYA KAKIMI-LIBO LEZHASHCHIMI V OSNOVE SVOJSTVAMI SIMMETRII, DOKAZYVATX INTERESNYE REZULXTATY BYLO BY KRAJNE NEUDOBNO. bYTX DOVOLXNYM INSTRUMENTOM, KOTORYM RABOTAESHX,---|TO, KONECHNO, SUSHCHESTVENNOE USLOVIE USPESHNOJ RABOTY. \section{v.~aRIFMETICHESKIE DEJSTVIYA NAD NENORMALIZOVANNYMI CHISLAMI S PLAVAYUSHCHEJ TOCHKOJ}. k STRATEGII NORMALIZACII VSEH CHISEL S PLAVAYUSHCHEJ TOCHKOJ MOZHNO OTNOSITXSYA DVOYAKO: LIBO BLAGOSKLONNO VOSPRINIMATX EE KAK POPYTKU POLUCHITX MINIMALXNYE POGRESHNOSTI, DOSTIZHIMYE DLYA DANNOJ STEPENI TOCHNOSTI, LIBO RASSMATRIVATX EE KAK POTENCIALXNO OPASNUYU LINIYU POVEDENIYA V TOM SMYSLE, CHTO PRI |TOM IMEETSYA TENDENCIYA VYDAVATX REZULXTATY ZA BOLEE TOCHNYE, CHEM ONI ESTX NA SAMOM DELE. kOGDA MY, NORMALIZUYA REZULXTAT OPERACII~$(1,+.31428571)\ominus (1,+.31415927)$, POLUCHAEM~$(-2, +.12644000)$, MY TERYAEM INFORMACIYU O MAKSIMALXNOJ STEPENI NETOCHNOSTI POSLEDNEJ VELICHINY. tAKAYA INFORMACIYA SOHRANILASX BY, ESLI BY MY OSTAVILI OTVET V VIDE~$(1, +.00012644)$. vHODNYE DANNYE K ZADACHE CHASTO NEIZVESTNY S TOJ TOCHNOSTXYU KAKAYA MOZHET DOPUSKATXSYA PREDSTAVLENIEM S PLAVAYUSHCHEJ TOCHKOJ nAPRIMER, ZNACHENIYA CHISLA aVOGADRO I POSTOYANNOJ pLANKA S VOSEMXYU ZNACHASHCHIMI CIFRAMI NEIZVESTNY, I BYLO BY BOLEE UDOBNO OBOZNACHATX IH \EQ{ (27, +.00060225)\hbox{ I }(-23,+.00010545) } SOOTVETSTVENNO, A NE~$(24,+.60225000)$ I~$(-26,+.10545000)$. bYLO BY VESXMA PRIYATNO, ESLI BY MY MOGLI ZADAVATX NASHI VHODNYE DANNYE DLYA KAZHDOJ ZADACHI V NENORMALIZOVANNOJ FORME, KOTORAYA BY OTRAZHALA STEPENX PRINYATOJ TOCHNOSTI, I ESLI BY V VYHODNYH DANNYH IMELASX INFORMACIYA O TOM, KAKOVA TOCHNOSTX OTVETA. k NESCHASTXYU, |TO UZHASNO TRUDNAYA PROBLEMA, HOTYA ISPOLXZOVANIE NENORMALIZOVANNOJ ARIFMETIKI I MOZHET POMOCHX NAM POLUCHITX NEKOTORYE UKAZANIYA TAKOGO RODA. nAPRIMER, MY MOZHEM SKAZATX S BOLXSHOJ STEPENXYU UVERENNOSTI, CHTO PROIZVEDENIE CHISLA aVOGADRO NA POSTOYANNUYU pLANKA RAVNO~$(0, +.00063507)$, A IH SUMMA RAVNA~$(27,+.00060225)$. (nAZNACHENIE |TOGO PRIMERA NE V TOM, CHTOBY NAVESTI NA MYSLX, CHTO MOZHNO PRIPISATX KAKOJ-LIBO VAZHNYJ FIZICHESKIJ SMYSL SUMME ILI PROIZVEDENIYU |TIH FUNDAMENTALXNYH POSTOYANNYH; SUTX V TOM, CHTO MOZHNO SOHRANITX NEMNOGO INFORMACII O TOCHNOSTI REZULXTATA VYCHISLENIJ NAD NETOCHNYMI %% 255 VELICHINAMI, KOGDA ISHODNYE OPERANDY NE ZAVISYAT ODIN OT DRUGOGO.) pRAVILA NENORMALIZOVANNOJ ARIFMETIKI PROSTY I SOSTOYAT V SLEDUYUSHCHEM: PUSTX~$l_u$---KOLICHESTVO NULEJ, STOYASHCHIH V NACHALE DROBNOJ CHASTI VELICHINY~$u=(e_u, f_u)$, TAK CHTO $l_u$~ESTX NAIBOLXSHEE CELOE CHISLO~$\le p$, DLYA KOTOROGO~$\abs{f_u} PESSIMISTICHNY; CHASTO SLISHKOM PESSIMISTICHNY; IMEYUTSYA TAKZHE NEKOTORYE PROBLEMY, SVYAZANNYE S PRIMENENIEM ITERACIONNYH CHISLENNYH METODOV. pO POVODU OBSUZHDENIYA INTERVALXNOGO METODA I NEKOTORYH EGO MODIFIKACIJ SM. STATXI e.~gIBBA [{\sl CACM,\/} {\bf 4} (1961), 319--320] I b.~shARTRA [{\sl JACM,\/} {\bf 13} (1966), 386--403], A TAKZHE KNIGU r.~mURA "Interval analysis" [Englewood Cliffs, Prentice Hall, 1966]. \section{C.~iSTORIYA I BIBLIOGRAFIYA}. pERVOE ISSLEDOVANIE PLAVAYUSHCHEJ ARIFMETIKI BYLO VYPOLNENO f.~l.~bAU|ROM I~k.~zAMELXZONOM [Optimale Rechengenauigkeit bei Rechenanlagen mit gleitendem Komma, {\sl Zeitschrift f\"ur angewandte Math.\ und Physik,\/} {\bf 4} (1953), 312--316]. sLEDUYUSHCHAYA PUBLIKACIYA POYAVILASX LISHX PYATXYU GODAMI POZZHE [J.~W.~Carr~III, Error analysis in floating-point arithmetic, {\sl CACM,\/} {\bf 2} (May, 1959), 10--15]. sM.~TAKZHE [P.~C.~Fischer, Proc.\ ACM 13th Nat.\ Meeting, Urbana, Illinois, 1958, paper~39]. v KNIGE dZH.~X.~uILKINSONA "Rounding errors in algebraic processes" [Englewood Cliffs, Prentice-Hall, 1963] POKAZANO, KAK PRIMENYATX METODY ANALIZA OSHIBOK INDIVIDUALXNYH ARIFMETICHESKIH OPERACIJ K ANALIZU OSHIBOK V ZADACHAH S BOLXSHIM CHISLOM OPERACIJ; SM. TAKZHE EGO %% 258 MONOGRAFIYU "The algebraic eigenvalue problem" [Oxford, Clarendon Press, 1965]. vVEDENNYE V |TOM PUNKTE OTNOSHENIYA~$\prec$, $\sim$, $\succ$, $\approx$ SORODSTVEINY IDEYAM, PROVOZGLASHENNYM a.~VAN~vEJNGAARDENOM [Numerical analysis as an independent science, {\sl BIT,\/} {\bf 6} (1966), 66--81]. pRIVEDENNYE VYSHE TEOREMY~A I~B NAVEYANY NEKOTORYMI BLIZKIMI REZULXTATAMI uLE m¸LLERA [{\sl BIT,\/} {\bf 5} (1965), 37--50, 251--255]. sM.\ TAKZHE [W.~Kahan, {\sl CACM,\/} {\bf 8} (1965), 40]. v POLXZU ARIFMETIKI NENORMALIZOVANNYH CHISEL S PLAVAYUSHCHEJ TOCHKOJ VYSTUPILI f.~l.~bAU|R I k.~zAMELXZON V UPOMYANUTOJ VYSHE STATXE, I NEZAVISIMO EE ISPOLXZOVAL dZH.~v.~kARROM IZ mICHIGANSKOGO UNIVERSITETA (1953~G.). nESKOLXKIMI GODAMI POZZHE BYLA SPROEKTIROVANA MASHINA MANIAC~III SO SHEMNOJ REALIZACIEJ ARIFMETIKI OBOIH TIPOV, SM.~R.~L.~Ashenhurst, N.~Metropolis, {\sl JACM,\/} {\bf 6} (1959), 415--428; {\sl IEEE Transactions on Electronic Computers,\/} {\bf EC-12} (1963), 896--901; R.~L.~Ashenhurst, Proc.\ Spring Joint Computer Conf., {\bf 21} (1962), 195--202. pO POVODU DRUGIH RANNIH OBSUZHDENIJ NENORMALIZOVANNOJ ARIFMETIKI SM.\ TAKZHE H.~L.~Gray, C.~Harrison, Jr., Proc.\ Eastern Joint Computer Conf., {\bf 16} (1959), 244--248, I W.~G.~Wadey, {\sl JACM,\/} {\bf 7} (1960), 129--139. \excercises (v |TIH ZADACHAH PREDPOLAGAETSYA, ESLI NE OGOVORENO PROTIVNOE, CHTO DEJSTVIYA VYPOLNYAYUTSYA NAD NORMALIZOVANNYMI CHISLAMI S PLAVAYUSHCHEJ TOCHKOJ.) \ex[M18] dOKAZHITE, CHTO TOZHDESTVO~\eqref[7] SLEDUET IZ SOOTNOSHENIJ~\eqref[2]--\eqref[6]. \ex[M20] iSPOLXZUYA TOZHDESTVA~\eqref[2]--\eqref[8], DOKAZHITE, CHTO~$(u\oplus x)\oplus (v\oplus y) \ge u \oplus v$, KAKOVY BY NI BYLI~$x\ge 0$ I~$y\ge 0$. \ex[M20] nAJDITE VOSXMIRAZRYADNYE DESYATICHNYE CHISLA S PLAVAYUSHCHEJ TOCHKOJ $u$, $v$ I~$w$, DLYA KOTORYH \EQ{ u \otimes (v \otimes w) \ne (u \otimes v) \otimes w, } PRICHEM NI PRI ODNOM IZ |TIH VYCHISLENIJ NE PROISHODIT NI PEREPOLNENIYA, NI ISCHEZNOVENIYA POKAZATELYA. \ex[10] mOZHNO LI NAJTI CHISLA S PLAVAYUSHCHEJ TOCHKOJ~$u$, $v$ I~$w$, DLYA KOTORYH PRI VYCHISLENII~$u \times (v \times w)$ PROISHODILO BY ISCHEZNOVENIE POKAZATELYA, A PRI VYCHISLENII~$(u \otimes v) \otimes w$ NE PROISHODILO? \ex[m20] vYPOLNYAETSYA LI RAVENSTVO~$u \oslash v = u \otimes (1 \oslash v)$ DLYA VSEH CHISEL S PLAVAYUSHCHEJ TOCHKOJ~$u$ I~$v\ne 0$, DLYA KOTORYH NE VOZNIKAET NI PEREPOLNENIYA, NI ISCHEZNOVENIYA POKAZATELYA? \ex[m22] dLYA KAZHDOGO IZ SLEDUYUSHCHIH DVUH SOOTNOSHENIJ VYYASNITE, VYPOLNYAETSYA LI ONO TOZHDESTVENNO DLYA VSEH CHISEL S PLAVAYUSHCHEJ TOCHKOJ~$u$. (a)~$0\ominus (0 \ominus u) = u$; (b)~$1\oslash (1\oslash u) = u$. \ex[M20] dOKAZHITE, CHTO DLYA~$\delta_p(x)$, OPREDELENNOGO SOOTNOSHENIEM~\eqref[16], SPRAVEDLIVO NERAVENSTVO~\eqref[17]. \rex[20] pUSTX~$\varepsilon=0.0001$; KAKOE IZ SOOTNOSHENIJ~$u\prec v(\varepsilon)$, $u\sim v(\varepsilon)$, $u\succ v(\varepsilon)$, $u\approx v(\varepsilon)$ VYPOLNYAETSYA DLYA SLEDUYUSHCHIH PAR VOSXMIRAZRYADNYH DESYATICHNYH CHISEL S PLAVAYUSHCHEJ TOCHKOJ S IZBYTKOM~$0$? { \medskip\narrower \item{a)}$u=(1,+.31415927)$, $v=(1,+.31416000)$; \item{b)}$u=(0, +.99997000)$, $v=(1,+.10000039)$; \item{c)}$u=(24, +.60225200)$, $v=(27, +.00060225)$; \item{d)}$u=(24, +.60225200)$, $v=(31, +.00000006)$; \item{e)}$u=(24, +.60225200)$, $v=(32, +.00000000)$. \medskip } %% 259 \ex[M22] dOKAZHITE UTVERZHDENIE~\eqref[36] I OB®YASNITE, POCHEMU ZAKLYUCHENIE NELXZYA USILITX DO~$u\approx w(\varepsilon_1+\varepsilon_2)$. \rex[m25] (u.~kAHAN.) nA NEKOTOROJ evm VYPOLNENIE ARIFMETICHESKIH DEJSTVIJ NAD CHISLAMI S PLAVAYUSHCHEJ TOCHKOJ PROVODITSYA BEZ TOCHNOGO OKRUGLENIYA, I FAKTICHESKI PROGRAMMA UMNOZHENIYA DLYA |TOJ evm IGNORIRUET POSLEDNIE $p$~RAZRYADOV $2p\hbox{-RAZRYADNOGO}$ PROIZVEDENIYA~$f_u f_v$. (tAKIM OBRAZOM; ESLI~$f_u f_v < 1/b$, TO IZ-ZA POSLEDUYUSHCHEJ NORMALIZACII NAIMENEE ZNACHIMAYA CIFRA VSEGDA OKAZYVAETSYA NULEM.) pOKAZHITE, CHTO |TO PRIVODIT K UTRATE MONOTONNOSTI UMNOZHENIYA, T.~E.\ CHTO SUSHCHESTVUYUT TAKIE POLOZHITELXNYE NORMALIZOVANNYE CHISLA S PLAVAYUSHCHEJ TOCHKOJ $u$, $v$, $w$, CHTO~$u v \otimes w$. \rex[m28]{vMESTO TOGO CHTOBY ISPOLXZOVATX DLYA DROBNYH CHASTEJ CHISEL S PLAVAYUSHCHEJ TOCHKOJ PRYAMOJ KOD, MY MOGLI BY SLEDUYUSHCHIM OBRAZOM VOSPOLXZOVATXSYA DOPOLNITELXNYM KODOM (SM.\ \S~4.1). dROBNAYA CHASTX~$f$ POLOZHITELXNOGO CHISLA NAHODITSYA, KAK I RANXSHE, V INTERVALE~$(0.100\ldots 0)_2 = 1/2\le f \le 1-2^{-p}=(0.111\ldots 1)_2$, NO DROBNAYA CHASTX~$f$ \emph{OTRICATELXNOGO} CHISLA LEZHIT V INTERVALE~$(1.000\ldots 0)_2 = -1 \le f \le -1/2 -2^{-p}=(1.011\ldots 1)_2$. sLOZHENIE I VYCHITANIE MOZHNO VYPOLNYATX PRI POMOSHCHI TAKOGO NEPOSREDSTVENNOGO OBOBSHCHENIYA ALGORITMA~4.2.1A: OBESPECHIVAYA DOSTATOCHNUYU TOCHNOSTX VYCHISLENIJ, MY POLUCHAEM VERNOE ZNACHENIE SUMMY ILI RAZNOSTI, POTOM NORMALIZUEM DROBX, TAK CHTOBY EE PERVYE $p$~RAZRYADOV IMELI NADLEZHASHCHIJ VID, A POSLE |TOGO "OKRUGLYAEM" REZULXTAT, DOBAVLYAYA EDINICU V $(p+1)\hbox{-J}$~RAZRYAD, I ZATEM OTBRASYVAEM VSE RAZRYADY, KROME PERVYH $p$~BITOV, PROIZVODYA V SLUCHAE PEREPOLNENIYA PRI OKRUGLENII DENORMALIZACIYU REZULXTATA. nAPRIMER, RAZNOSTX~$(2,0.11111111)\ominus (6,0.10000000)$ BYLA BY VYCHISLENA SNACHALA V VIDE~$(6, 1.100011111111)$, NORMALIZOVANA K VIDU~$(5, 1.00011111111)$ I ZATEM OKRUGLENA DO~$(5,1.00100000)$. vZYAV TE ZHE CHISLA V PROTIVOPOLOZHNOM PORYADKE, MY POLUCHILI BY \EQ{ (6,0.10000000) \ominus (2,0.11111111) =(5,0.111000000); } |TO PREDYDUSHCHIJ OTVET, VZYATYJ S PROTIVOPOLOZHNYM ZNAKOM, TAK CHTO SOOTNOSHENIE~\eqref[7] VYPOLNYAETSYA DLYA DANNOGO SLUCHAYA. \hiddenpar nAJDITE DVA CHISLA~$u$ I~$v$, PREDSTAVLENNYE V DOPOLNITELXNOM DVOICHNOM KODE, DLYA KOTORYH RAVENSTVO~\eqref[7] \emph{NE} VYPOLNYAETSYA I DLYA KOTORYH V HODE VYCHISLENIJ NE PROISHODIT NI PEREPOLNENIYA, NI ISCHEZNOVENIYA POKAZATELYA. } \ex[m15] pOCHEMU~\eqref[45] SLEDUET IZ~\eqref[44]? \rex[m25]{nEKOTORYE YAZYKI PROGRAMMIROVANIYA (I DAZHE NEKOTORYE KOMPXYUTERY) ISPOLXZUYUT TOLXKO ARIFMETIKU NAD VELICHINAMI S PLAVAYUSHCHEJ TOCHKOJ I NE IMEYUT SREDSTV DLYA TOCHNYH VYCHISLENIJ S CELYMI CHISLAMI. eSLI TREBUETSYA VYPOLNYATX OPERACII NAD CELYMI CHISLAMI, MY MOZHEM, KONECHNO, PREDSTAVITX IH V VIDE CHISEL S PLAVAYUSHCHEJ TOCHKOJ, I ESLI OPERACII ARIFMETIKI NAD CHISLAMI S PLAVAYUSHCHEJ TOCHKOJ UDOVLETVORYAYUT OSNOVNYM OPREDELENIYAM~\eqref[11]--\eqref[14] |TOGO PUNKTA, TO, KAK MY ZNAEM, \emph{VSE} |TI OPERACII OKAZYVAYUTSYA TOCHNYMI, PRI USLOVII CHTO OPERANDY I OTVET DOPUSKAYUT TOCHNOE PREDSTAVLENIE V $p\hbox{-RAZRYADNOJ}$ SETKE. sLEDOVATELXNO, POKA MY UVERENY, CHTO CHISLA NE SLISHKOM VELIKI, MY MOZHEM SKLADYVATX, VYCHITATX ILI UMNOZHATX CELYE CHISLA, NE OPASAYASX NETOCHNOSTI, SVYAZANNOJ S OSHIBKAMI OKRUGLENIYA. \hiddenpar nO PREDPOLOZHIM, CHTO PROGRAMMIST HOCHET OPREDELITX, YAVLYAETSYA LI $m$~TOCHNYM KRATNYM~$n$, GDE~$m$ I~$n\ne 0$---CELYE CHISLA. pREDPOLOZHIM DALEE, CHTO V NASHEM RASPORYAZHENII, KAK I V UPR.~4.2.1-15, ESTX PODPROGRAMMA, KOTORAYA VYCHISLYAET~$\round (u \bmod 1, p) = u \ellmod 1$ DLYA LYUBOGO CHISLA~$u$ S PLAVAYUSHCHEJ TOCHKOJ. oDIN IZ HOROSHIH SPOSOBOV OPREDELITX, YAVLYAETSYA LI~$m$ KRATNYM~$n$, MOG BY SOSTOYATX V TOM, CHTOBY PROVERITX PRI POMOSHCHI UPOMYANUTOJ PODPROGRAMMY, VERNO LI RAVENSTVO~$((m\oslash ) \ellmod 1)=0$. nE ISKLYUCHENO, ODNAKO, CHTO OSHIBKI OKRUGLENIYA V VYCHISLENIYAH NAD VELICHINAMI S PLAVAYUSHCHEJ TOCHKOJ SDELAYUT |TU PROVERKU NEDOSTOVERNOJ. \hiddenpar nAJDITE SOOTVETSTVUYUSHCHIE OGRANICHENIYA NA INTERVAL IZMENENIYA CELYH CHISEL~$n\ne 0$ I~$m$, PRI KOTORYH $m$~BUDET KRATNYM~$n$ V TOM I TOLXKO TOM SLUCHAE, %% 260 KOGDA~$(m\oslash n) \ellmod 1=0$. dRUGIMI SLOVAMI, POKAZHITE, CHTO ESLI~$m$ I~$n$ NE SLISHKOM VELIKI, TO NASHA PROVERKA PRIGODNA. } %% !!! chTO |TO ZA SHTUKA: w) [... ZDESX PROPUSHCHEN ZNAK?...] (\varepsilon) \ex[m27] nAJDITE PODHODYASHCHEE ZNACHENIE~$\varepsilon$, PRI KOTOROM~$(u\otimes v) \otimes w \approx u \otimes (v \otimes w) \; (\varepsilon)$ V SLUCHAE, KOGDA ISPOLXZUETSYA \emph{NENORMALIZOVANNOE} UMNOZHENIE. (eTO---OBOBSHCHENIE SOOTNOSHENIYA~\eqref[41], POSKOLXKU NENORMALIZOVANNOE UMNOZHENIE NICHEM NE OTLICHAETSYA OT NORMALIZOVANNOGO, ESLI VHODNYE DANNYE~$u$, $v$ I~$w$ NORMALIZOVANY.) \ex[m24] (X.~bX¸RK.) vSEGDA LI VYCHISLENNAYA SREDNYAYA TOCHKA INTERVALA LEZHIT MEZHDU EGO KONCEVYMI TOCHKAMI? (iNYMI SLOVAMI, SLEDUET LI IZ NERAVENSTVA~$u\le v$ NERAVENSTVO~$u \le (u \oplus v) \otimes 2 \le v$?) \ex[vm23] pREDPOLOZHIM, CHTO~$u$ I~$v$---VESHCHESTVENNYE CHISLA, NEZAVISIMO I RAVNOMERNO RASPREDELENNYE V INTERVALAH~$0 < u_0 - \delta \le u < u_0 + \delta$ I~$0 < v_0 - \varepsilon \le v \le v_0 + \varepsilon$. (a)~kAKOVO SREDNEE ZNACHENIE PROIZVEDENIYA~$uv$? (b)~kAKOVO SREDNEE ZNACHENIE CHASTNOGO~$u/v$? [eTI VOPROSY IMEYUT OTNOSHENIE K VOPROSU O VYBORE PRAVILXNOGO SPOSOBA OKRUGLYATX REZULXTATY OPERACIJ UMNOZHENIYA I DELENIYA.] \ex[28] nAPISHITE \MIX-PODPROGRAMMU~|FCMP|, KOTORAYA SRAVNIVAET MEZHDU SOBOJ CHISLA~$u$ I~$v$ V FORME S PLAVAYUSHCHEJ TOCHKOJ, NAHODYASHCHIESYA SOOTVETSTVENNO V POLE~|ACC| I V REGISTRE~|A|, I USTANAVLIVAET INDIKATOR SRAVNENIYA V SOSTOYANIYA "MENXSHE", "RAVNO" ILI "BOLXSHE" V SOOTVETSTVII S TEM, BUDET LI~$u \prec v$, $u \sim v$ ILI~$u \succ v(\varepsilon)$; PRI |TOM $\varepsilon$~HRANITSYA V POLE~|EPSILON| KAK NEOTRICATELXNAYA VELICHINA V FORME S PLAVAYUSHCHEJ TOCHKOJ, PRICHEM PREDPOLAGAETSYA, CHTO TOCHKA RASPOLOZHENA SLEVA OT SLOVA. \ex[m40]. sUSHCHESTVUET LI V ARIFMETIKE NENORMALIZOVANNYH VELICHIN PODHODYASHCHEE CHISLO~$\varepsilon$, TAKOE, CHTO \EQ{ u \otimes (v\otimes w) \approx (u \otimes v) \otimes (u \otimes w)\; (\varepsilon)? } \subsubchap{*vYCHISLENIYA S DVOJNOJ TOCHNOSTXYU} %% 4.2.3 dO SIH POR MY GOVORILI OB ARIFMETIKE CHISEL S PLAVAYUSHCHEJ TOCHKOJ "ODNOKRATNOJ TOCHNOSTI", CHTO PO SUSHCHESTVU OZNACHAET, CHTO PREDSTAVLENNYE V FORME S PLAVAYUSHCHEJ TOCHKOJ VELICHINY, S KOTORYMI MY RABOTALI, MOGLI HRANITXSYA V ODNOM MASHINNOM SLOVE. eSLI ARIFMETIKA ODNOKRATNOJ TOCHNOSTI NE OBESPECHIVAET DOSTATOCHNOJ DLYA NASHIH POTREBNOSTEJ TOCHNOSTI, TO TOCHNOSTX MOZHNO UVELICHITX PRI POMOSHCHI SREDSTV PROGRAMMISTSKOGO HARAKTERA, ISPOLXZUYA DLYA PREDSTAVLENIYA KAZHDOGO CHISLA DVA ILI BOLXSHE SLOV PAMYATI. hOTYA OBSHCHUYU PROBLEMU VYCHISLENIJ POVYSHENNOJ TOCHNOSTI MY OBSUZHDAEM V~\S~4.3, IMEET SMYSL OTDELXNO OBSUDITX ZDESX VOPROS O VYCHISLENIYAH DVOJNOJ TOCHNOSTI; K VYCHISLENIYAM DVOJNOJ TOCHNOSTI PRIMENIMY SPECIALXNYE METODY, PRAKTICHESKI NEPRIGODNYE DLYA SLUCHAYA BOLXSHEJ TOCHNOSTI; KROME TOGO, VYCHISLENIYA S DVOJNOJ TOCHNOSTXYU RAZUMNO SCHITATX TEMOJ, IMEYUSHCHEJ SAMOSTOYATELXNOE ZNACHENIE, TAK KAK |TO PERVYJ SHAG ZA PREDELY ODNOKRATNOJ TOCHNOSTI, POZVOLYAYUSHCHIJ UDOVLETVORITELXNO RESHATX MNOGIE ZADACHI, NE TREBUYUSHCHIE NEPOMERNO VYSOKOJ TOCHNOSTI. dLYA VYPOLNENIYA ARIFMETICHESKIH DEJSTVIJ NAD CHISLAMI S PLAVAYUSHCHEJ TOCHKOJ DVOJNAYA TOCHNOSTX NEOBHODIMA POCHTI VSEGDA V OT- %% 261 \bye