как 8-ми, так и 16-ти битовых значений. Регистровые указатели: SP и BP Регистровые указатели SP и BP обеспечивают системе доступ к данным в сегменте стека. Реже они используются для операций сложения и вычитания. 1. Регистр SP. Указатель стека обеспечивает использование стека в памяти, позволяет временно хранить адреса и иног да данные. Этот регистр связан с регистром SS для адреса ции стека. 2. Регистр BP. Указатель базы облегчает доступ к параметрам: данным и адресам переданным через стек. Индексные регистры: SI и DI Оба индексных регистра возможны для расширенной адресации и для использования в операциях сложения и вычитания. 1. Регистр SI. Этот регистр является индексом источника и применяется для некоторых операций над строками. В данном контексте регистр SI связан с регистром DS. 2. Регистр DI. Этот регистр является индексом назначения и применяется также для строковых операций. В данном контексте регистр DI связан с регистром ES. Регистр командного указателя: IP Регистр IP содержит смещение на команду, которая должна быть выполнена. Обычно этот регистр в программе не использу ется, но он может изменять свое значение при использовании отладчика DOS DEBUG для тестирования программы. Флаговый регистр Ассемблер для IBM PC 11 Девять из 16 битов флагового регистра являются активными и определяют текущее состояние машины и результатов выполне ния. Многие арифметические команды и команды сравнения изменяют состояние флагов. Назначение флаговых битов: Флаг Назначение O (Переполнение) Указывает на переполнение старшего бита при арифметических командах. D (Направление) Обозначает левое или правое направ ление пересылки или сравнения строковых данных (данных в памяти превышающих длину одного слова). I (Прерывание) Указывает на возможность внешних прерываний. T (Пошаговый режим) Обеспечивает возможность работы процессора в пошаговом режиме. На пример, программа DOS DEBUG уста навливает данный флаг так, что воз можно пошаговое выполнение каждой команды для проверки изменения содержимого регистров и памяти. S (Знак) Содержит результирующий знак после арифметических операций (0 - плюс, 1 - минус). Z (Ноль) Показывает результат арифметичес ких операций и операций сравнения (0 - ненулевой, 1 - нулевой результат). A (Внешний перенос) Содержит перенос из 3-го бита для 8-битных данных, используется для специальных арифметических операций. P (Контроль четности) Показывает четность младших 8-битовых данных (1 - четное и 0 - нечетное число). C (Перенос) Содержит перенос из старшего бита, после арифметических операций, а также последний бит при сдвигах или циклических сдвигах. При программировании на ассемблере наиболее часто исполь зуются флаги O, S, Z, и C для арифметических операций и операций сравнения, а флаг D для обозначения направления в операциях над строками. В последующих главах содержится более подробная информация о флаговом pегистре. АРХИТЕКТУРА PC ------------------------------------------------------------ Основными элементами аппаратных средств компьютера являют ся: cистемный блок, клавиатура, устройство отображения, дисководы, печатающее устройство (принтер) и различные Ассемблер для IBM PC 12 средства для асинхронной коммуникации и управления игровыми программами. Системный блок состоит из системной платы, блока питания и ячейки раширения для дополнительных плат. На системной плате размещены: - микропроцессор (Intel); - постоянная память (ROM 40Кбайт); - оперативная память (RAM до 512К в зависимости от модели); - расширенная версия бейсик-интерпретатора. Ячейки расширения обеспечивают подключение устройств отображения, дисководов для гибких дисков (дискет), каналов телекоммуникаций, дополнительной памяти и игровых устройств. Клавиатура содержит собственный микропроцессор, который oбеспечивает тестирование при включении памяти, сканирование клавиатуры, подавление "дребезга" клавишей и буферизацию до 20 символов. "Мозгом" компьютера является микропроцессор, который выполняет обработку всех команд и данных. Процессор 8088 использует 16-битовые регистры, которые могут обрабатывать два байта oдновременно. Процессор 8088 похож на 8086, но с одним различием: 8088 ограничен 8-битовыми (вместо 16- битовых) шинами, которые обеспечивают передачу данных между процессором, памятью и внешними устройствами. Это ограниче ние соотносит стоимость передачи данных и выигрыш в простоте аппаратной реализации. Процессоры 80286 и 80386 являются расширенными версиями процессора 8086. Как показано на рис. 1.3 процессор разделен на две части: oперационное устройство (ОУ) и шинный интерфейс (ШИ). Роль ОУ заключается в выполнение команд, в то время как ШИ подготавливает команды и данные для выполнения. Операционное устройство cодержит арифметико-логическое устройство (АЛУ), устройство yправления (УУ) и десять регистров. Эти устрой ства обеспечивают выполнение команд, арифметические вычисле ния и логические oперации (сравнение на больше, меньше или равно). Три элемента шинного интерфейса: устройство управления шиной, очередь команд и сегментные регистры осуществляют три важные функции: во-первых, ШИ управляет передачей данных на операционное устройство, в память и на внешнее устройство ввода/вывода. Во-вторых, четыре сегментных регистра управля ют адресацией памяти объемом до 1 Мбайта. Третья функция ШИ это выборка команд. Так все программные команды находятся в памяти, ШИ должен иметь доступ к ним для выборки их в очередь команд. Так как очередь имеет размер 4 или более байт, в зависимости от процессора, ШИ должен "заглядывать вперед" и выбирать команды так, чтобы всегда существовала непустая очередь команд готовых для выполнения. Операционное устройство и шинный интерфейс работают парал лельно, причем ШИ опережает ОУ на один шаг. Операционное устройcтво сообщает шинному интерфейсу о необходимости доступа к данным в памяти или на устройство ввода/вывода. Кроме того ОУ запрашивает машинные команды из очереди Ассемблер для IBM PC 13 команд. Пока ОУ занято выполнением первой в очереди команды, ШИ выбирает следующую команду из памяти. Эта выборка происходит во время выполнения, что повышает cкорость обработки. Память Обычно микрокомпьютер имеет два типа внутренней памяти. первый тип это постоянная память (ПЗУ) или ROM (read-only memory). ROM представляет собой специальную микросхему, из котоpой (как это следует из названия) возможно только чте ние. Поскольку данные в ROM специальным образом "прожигают ся" они не могут быть модифицированы. Основным назначением ROM является поддержка процедур начальной загрузки: при включении питания компьютера ROM выполняет pазличные проверки и загружает в оперативную память (RAM) данные из системной дискеты (например, DOS). Для целей программирования наиболее важным элементом ROM является BIOS (Basic Input/Output System) базовая система ввода/вывода, которая рассматривается в следующих главах. (Basic - здесь обычное слово, а не язык программирования). ROM кроме того поддерживает интерпретатор языка бейсик и формы для графических символов. Память, с которой имеет дело программист, представляет собой RAM (Random Access Memory) или ОЗУ, т.е. оперативная памяти, доступная как для чтения, так и для записи. RAM можно рассматривать как рабочую область для временного хранения программ и данных на время выполнения. Так как содержимое RAM теряется при отключении питания компьютера, необходима внешняя память для сохранения программ и данных. Если установлена дискета с операционной системой или имеeтся жесткий диск типа винчестер, то при включении питания ROM загружает программы DOS в RAM. (Загружается только основная часть DOS, а не полный набор программ DOS). Затем необходимо oтветить на приглашение DOS для установки даты и можно вводить запросы DOS для выполнения конкретных действий. Одним из таких действий может быть загрузка программ с диска в RAM. Поскольку DOS не занимает всю память, то в ней имеется (обычно) место для пользовательских программ. Пользовательская программа выполняется в RAM и обычно осуществляет вывод на экран, принтер или диск. По окончании можно загрузить другую программу в RAM. Ппредыдущая программа хранится на диске и новая программа при загрузке может наложиться (затереть) предыдущую программу в RAM. Выделение памяти. Так как любой сегмент имеет объем до 64К и имеется четыре типа сегментов, то это предполагает общее количество доступной RAM памяти: 4 х 64К = 256К. Но возможно любое количество сегментов. Для того, чтобы адресо вать другой cегмент, необходимо всего лишь изменить адрес сегментного регистра. Ассемблер для IBM PC 14 RAM включает в себя первые три четверти памяти, а ROM - последнюю четверть. В соответствии с картой физической памяти микрокомпьютера, приведенной на рис. 1.4, первые 256К RAM памяти находятся на системной плате. Так как одна область в RAM зарезервирована для видеобуфера, то имеется 640К доступных для использования программистом, по крайней мере в текущих версиях DOS. ROM начинается по адресу 768К и oбеспечивает поддержку операций ввода/вывода на такие устройcтва как контролер жесткого диска. ROM, начинающийся по адреcу 960К управляет базовыми функциями компьютера, такими как тест при включении питания, точечные образы графических символов и автозагрузчик с дискет. Все дальнейшие упоминания RAM используют общий термин - память. Адресация. Все ячейки памяти пронумерованы последователь но от 00 - минимального адреса памяти. Процессор обеспечива ет доступ к байтам или словам в памяти. Рассмотрим десятич ное число 1025. Для записи в память шест. представления этого числа - 0401 требуется два байта или одно слово. Оно состоит из cтаршей части - 04 и младшей части - 01. Система хранит в памяти байты слова в обратной последовательности: младшая часть по меньшему адресу, а старшая - по большему адресу. Предположим, что процессор записал шест. 0401 из регистра в ячейки памяти 5612 и 5613, следующим образом: |01|04| | | ячейка 5612, ячейка 5613 младший байт старший байт Процессор полагает, что байты числовых данных в памяти представлены в обратной последовательности и обрабатывает их соответственно. Несмотря на то, что это свойство полностью aвтоматизировано, следует всегда помнить об этом факте при программировании и отладке ассемблерных программ. ОСНОВНЫЕ ПОЛОЖЕНИЯ НА ПАМЯТЬ ------------------------------------------------------------ - Единицей памяти является байт, состоящий из восьми информационных и одного контрольного битов. Два смежных байта образуют слово. - Сердцем компьютера является микропроцессор, который имеет доступ к байтам или словам в памяти. - ASCII код есть формат представлением символьных данных. - Компьютер способен различать биты, имеющие разное значе ние: 0 или 1, и выполнять арифметические операции только в двоичном формате. - Значение двоичного числа определено расположением единич ных битов. Так, двоичное 1111 равно 2**3 + 2**2 + 2**1 + 2**0, или 15. Ассемблер для IBM PC 15 - Отрицательные числа представляются двоичным дополнением: обратные значения бит положительного представления числа +1. - Сокращенная запись групп из четыре битов представляет собой шестнадцатиричный формат. Шест. цифры 0-9 и A-F представляют двоичные числа от 0000 до 1111. - Программы состоят из сегментов: сегмент стека для хране ния адресов возврата, сегмент данных для определения данных и рабочих областей и сегмент кода для выполняемых команд. Все адреса в программе представлены как относи тельные смещения от начала сегмента. - Регистры управляют выполнением команд, адресацией, арифме тическими операциями и состоянием выполнения. - ROM (ПЗУ) и RAM (ОЗУ) представляют собой два типа внутрен ней памяти. - Процессор хранит двухбайтовые числовые данные (слова) в памяти в обратной последовательности. ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ ------------------------------------------------------------ 1.1. Напишите битовые представления ASCII кодов для следую щих однобитовых символов. (Используйте приложение 1 в качестве справочника): а) P, б) p, в) #, г) 5. 1.2. Напишите битовые представления для следующих чисел: а) 5, б) 13, в) 21, г) 27. 1.3. Cложите следующие двоичные: а) 00010101 б) 00111110 в) 00011111 00001101 00101001 00000001 1.4. Определите двоичные дополнения для следующих двоичных чисел: а) 00010011, б) 00111100, в) 00111001. 1.5. Определите положительные значения для следующих отрица тельных двоичных чисел: а) 11001000, б) 10111101, в) 10000000. 1.6. Определите шест. представления для а) ASCII символа Q, б) ASCII числа 7, в) двоичного числа 01011101, г) двоичного 01110111. 1.7. Сложите следующие шест. числа: а) 23A6 б) 51FD в) 7779 г) EABE 0022 3 887 26C4 1.8. Определите шест. представления для следующих десятич ных чисел. Метод преобразования приведен в приложении 2. Проверте также полученные результаты, преобразовав шест. значения в двоичные и сложив единичные биты. а) 19, б) 33, в) 89, г) 255, д) 4095, е) 63398. 1.9. Что представляют собой три типа сегментов, каковы их максимальные размеры и адреса, с которых они начинают ся. Ассемблер для IBM PC 16 1.10. Какие регистры можно использовать для следующих целей: а) сложение и вычитание, б) подсчет числа циклов, в) умножение и деление, г) адресация сегментов, д) инди кация нулевого результата, е) адресация выполняемой команды? 1.11. Что представляют собой два основных типа памяти компью тера и каково их основное назначение? Ассемблер для IBM PC. Глава 2 30 ГЛАВА 2. Выполнение программ ------------------------------------------------------------ Выполнение программ Цель: Представить машинный язык, ввод команд в память и выполнение программ. ВВЕДЕНИЕ ------------------------------------------------------------ Основой данной главы является использование DOS програм- мы с именем DEBUG, которая позволяет просматривать память, вводить программы и осуществлять трассировку их выполнения. В главе показан процесс ввода этих программ непосредственно в память в область сегмента кодов и объяснен каждый шаг выполнения программы. Начальные упражнения научат проверять содержимое конкрет ных ячеек памяти. В первом примере программы используются непосредственные данные определенные в командах загрузки регистров и арифметических командах. Второй пример программы использует данные, определенные отдельно в сегменте данных. Трассировка этих команд в процессе выполнения программы позволяет понять действия компьютера и роль регистров. Для начала не требуется предварительных знаний языка асcемблера и даже программирования. Все что необходимо - это IBM PC или совместимый микрокомпьютер и диск с операционной cистемой DOS. НАЧАЛО РАБОТЫ ------------------------------------------------------------ Прежде всего необходимо вставить дискету с DOS в левый дисковод A. Если питание выключено, то его надо включить; eсли питание уже включено, нажмите вместе и задержите клавиши Ctrl и Alt и нажмите клавишу Del. Когда рабочая часть DOS будет загружена в память, на экране появится запрос для ввода даты и времени, а затем буква текущего дисковода, обычно A для дискеты и C для вин честера (твердого диска). Изменить текущий дисковод можно, нажав соответствующую букву, двоеточие и клавишу Return. Это обычная процедура загрузки, которую следует использовать всякий раз для упражнений из этой книги. ПРОСМОТР ЯЧЕЕК ПАМЯТИ ------------------------------------------------------------ В этом первом упражнении для просмотра содержимого ячеек памяти используется программа DOS DEBUG . Для запуска этой пограммы введите DEBUG и нажмите Return, в результате программа DEBUG должна загрузится с диска в память. После окончания загрузки на экране появится приглашение в виде Ассемблер для IBM PC. Глава 2 31 дефиса, что свидетельствует о готовности программы DEBUG для приема команд. Единственная команда, которая имеет oтношение к данному упражнению, это D - для дампа памяти. 1. Размер памяти. Сначала проверим размер доступной для работы памяти. В зависимости от модели компьютера это значение связано с установкой внутренних переключателей и может быть меньше, чем реально существует. Данное значение находится в ячейках памяти шест.413 и 414 и его можно просмотреть из DEBUG по адресу, состоящему из двух частей: ъ 400 - это адрес сегмента, который записывается как 40 (последний нуль подразумевается) и ъ 13 - это смещение от начала сегмента. Таким образом, можно ввести следующий запрос: D 40:13 (и нажать Return) Первые два байта, появившиеся в результате на экране, содержат размер памяти в килобайтах и в шестнадцатерич ном представлении, причем байты располагаются в обрат ной последовательности. Несколько следующих примеров показывают шест. обратное, шест. нормальное и десятичные представления. Шест.обратн. Шест. норм. Десятичн. (К) 8000 0080 128 0001 0100 256 8001 0180 384 0002 0200 512 8002 0280 640 2. Серийный номер. Серийный номер компьютера "зашит" в ROM по адресу шест. FE000. Чтобы увидеть его, следует ввести: D FE00:0 (и нажать Return) В результате на экране появится семизначный номер компьютера и дата копирайт. 3. Дата ROM BIOS. Дата ROM BIOS в формате mm/dd/yy находит ся по шест. адресу FFFF5. Введите D FFFF:05 (и нажмите Return) знание этой информации (даты) иногда бывает полезным для определения модели и возраста компьютера. Ассемблер для IBM PC. Глава 2 32 Теперь, поскольку вы знаете, как пользоваться командой D (Display), можно устанавливать адрес любой ячейки памяти для просмотра содержимого. Можно также пролистывать память, периодически нажимая клавишу D, - DEBUG выведет на экран адреса, следующие за последней командой. Для окончания работы и выхода из отладчика в DOS введите команду Q (Quit). Рассмотрим теперь использование отладчика DEBUG для непосредственного ввода программ в память и трассировки их выполнения. ПРИМЕР МАШИННЫХ КОДОВ: НЕПОСРЕДСТВЕННЫЕ ДАННЫЕ ------------------------------------------------------------ Цель данного примера - проиллюстрировать простую програм му на машинном языке, ее представление в памяти и результаты ее выполнения. Программа показана в шестнадцатиричном формате: Команда Назначение B82301 Переслать шест.значение 0123 в AX. 052500 Прибавить шест.значение 0025 к AX. 8BD8 Переслать содержимое AX в BX. 03D8 Прибавить содержимое AX к BX. 8BCB Переслать содержимое BX в CX. 2BC8 Вычесть содержимое AX из AX (очистка AX). 90 Нет операции. CB Возврат в DOS. Можно заметить, что машинные команды имеют различную длину: один, два или три байта. Машинные команды находятся в памяти непосредственно друг за другом. Выполнение программы начинается с первой команды и далее последовательно выпол няются остальные. Не следует, однако, в данный момент искать большой смысл в приведенном машинном коде. Например, в одном случае MOV - шест. B8, а в другом - шест. 8B. Можно ввести эту программу непосредственно в память машины и выполнить ее покомандно. В тоже время можно просматривать cодержимое регистров после выполнения каждой команды. Начнем данное упражнение так же как делалось предыдущее - ввод команды oтладчика DEBUG и нажатие клавиши Return. После загрузки DEBUG на экране высвечивается приглашение к вводу команд в виде дефиса. Для печати данного упражнения включите принтер и нажмите Ctrl и PrtSc одновременно. Для непосредственного ввода программы на машинном языке введите следующую команду, включая пробелы: E CS:100 B8 23 01 05 25 00 (нажмите Return) Команда E обозначает Enter (ввод). CS:100 определяет адрес памяти, куда будут вводиться команды, - шест. 100 (256) байт от начала сегмента кодов. (Обычный стартовый Ассемблер для IBM PC. Глава 2 33 адрес для машинных кодов в отладчике DEBUG). Ккоманда E записывает каждую пару шестнадцатиpичных цифр в память в виде байта, начиная с адреса CS:100 до адреса CS:105. Следующая команда Enter: E CS:106 8B D8 03 D8 8B CB (Return) вводит шесть байтов в ячейки, начиная с адреса CS:106 и далее в 107, 108, 109, 10A и 10B. Последняя команда Enter: E CS:10C 2B C8 2B C0 90 CB (Return) вводит шесть байтов, начиная с CS:10C в 10D, 10E, 10F, 110 и 111. Проверьте правильность ввода значений. Если есть ошибки, то следует повторить команды, которые были введены неправильно. Теперь осталось самое простое - выполнить эти команды. На pис. 2-1 показаны все шаги, включая команды E. На вашем экране должны быть аналогичные результаты после ввода каждой команды oтладчика. Введите команду R для просмотра содержимого регистров и флагов. В данный момент отладчик покажет содержимое регистров в шест. формате, например, AX=0000, BX=0000, ... В зависимости от версии DOS содержимое регистров на экране может отличаться от показанного на рис. 2.1. Содержи мое регистра IP (указатель команд) выводится в виде IP=0100, показывая что выполняемая команда находится на смещении 100 байт от начала сегмента кодов. (Вот почему использовалась команда E CS:100 для установки начала программы.) Регистр флагов на рис. 2.1 показывает следующие значения флагов: NV UP DI PL NZ NA PO NC ------------------------------------------------------------ ------------------------------------------------------------ Рис. 2.1. Трассировка машинных команд. Данные значения соответствуют: нет переполнения, правое направление, прерывания запрещены, знак плюс, не ноль, нет внешнего переноса, контроль на честность и нет переноса. В данный момент значение флагов не существенно. Команда R показывает также по смешению 0100 первую выпол няемую машинную команду. Регистр CS на рис. 2.1 содержит значение CS=13C6 (на разных компьютерах оно может различаться), а машинная команда выглядит следующим образом: 13C6:0100 B82301 MOV AX,0123 Ассемблер для IBM PC. Глава 2 34 ъ CS=13C6 обозначает, что начало сегментов кода находится по смещению 13C6 или точнее 13C60. Значение 13C6:0100 обозначает 100 (шест.) байтов от начального адреса 13C6 в регистре CS. ъ B82301 - машинная команда, введенная по адресу CS:100. ъ MOV AX,0123 - ассемблерный мнемонический код, соответствующий введеной машинной команде. Это есть результат операции дисассемблирования, которую обеспе чивает отладчик для более простого понимания машинных команд. В последующих главах мы будем кодировать про граммы исключительно в командах ассемблера. Рассматри ваемая в данном слечае команда обозначает пересылку непосредственного значения в регистр AX. В данный момент команда MOV еще не выполнена. Для ее выполнения нажмите клавишу T (для трассировки) и клавишу Return. В результате команда MOV будет выполнена и отладчик выдаст на экран содержимое регистров, флаги, а также следующую на очереди команду. Заметим, что регистр AX теперь содержит 0123. Машинная команда пересылки в регистр AX имеет код B8 и за этим кодом следует непосредственные данные 2301. В ходе выполнения команда B8 пересылает значение 23 в младшую часть регистра AX, т.е однобайтовый регистр AL, а значение 01 - в старшую часть регистра AX, т.е в регистр AH: AX: |01|23| Содержимое регистра IP:0103 показывает адрес следующей выполняемой команды в сегменте кодов: 13C6:0103 052500 ADD AX,0025 Для выполнения данной команды снова введите T. Команда прибавит 25 к младшей (AL) части регистра AX и 00 к старшей (AH) части регистра AX, т.е прибавит 0025 к регистру AX. Теперь регистр AX содержит 0148, а регистр IP 0106 - адрес cледующей команды для выполнения. Введите снова команду T. Следующая машинная команда пересылает содержимое регистра AX в регистр BX и после ее выполнения в регистре BX будет содержаться значение 0148. Регистр AX сохраняeт прежнее значение 0148, поскольку команда MOV только копиpует данные из одного места в другое. Теперь вводите команду T для пошагового выполнения каждой оставшейся в программе команды. Следующая команда прибавит cодержимое регистра AX к содержимому регистра BX, в последнем получим 0290. Затем программа скопирует содержимое pегистра BX в CX, вычтет AX из CX, и вычтет AX из него самого. После этой последней команды, флаг нуля изменит свое состояние c NZ (ненуль) на ZR (нуль), так как результатом этой команды является нуль (вычитание AX из самого себя очищает этот регистр в 0). Ассемблер для IBM PC. Глава 2 35 Можно ввести T для выполнения последних команд NOP и RET, но это мы сделаем позже. Для просмотра программы в машинных кодах в сегменте кодов введите D для дампа: D CS:100 В результате отладчик выдаст на каждую строку экрана по 16 байт данных в шест. представлении (32 шест. цифры) и в символьном представлении в коде ASCII (один символ на каждую пару шест. цифр). Представление машинного кода в символах ASCII не имеет смысла и может быть игнорировано. В следующих разделах будет рассмотрен символьный дамп более подробно. Первая строка дампа начинается с 00 и представляет содержимое ячеек от CS:100 до CS:10F. Вторая строка представляет cодержимое ячеек от CS:110 до CS:11F. Несмотря на то, что ваша программа заканчивается по адресу CS:111, команда Dump aвтоматически выдаст на восьми строках экрана дамп с адреса CS:100 до адреса CS:170. При необходимости повторить выполнение этих команд сбросьте содержимое регистра IP и повторите трассировку снова. Введите R IP, введите 100, а затем необходимое число команд T. После каждой команды нажимайте клавишу Return. На рис.2.2 показан результат выполнения командыD CS:100. Обратите внимание на машинный код с CS:100 до 111 и вы обнаружите дамп вашей программы; следующие байты могут содержать любые данные. ------------------------------------------------------------ ------------------------------------------------------------ Рис. 2.2. Дамп кодового сегмента. Для завершения работы с программой DEBUG введите Q (Quit - выход). В результате произойдет возврат в DOS и на экране появится приглашение A> или C>. Если печатался протокол работы с отладчиком, то для прекращения печати cнова нажмите Ctrl/PrtSc. ПРИМЕР МАШИННЫХ КОДОВ: ОПРЕДЕЛЕНИЕ ДАННЫХ ------------------------------------------------------------ В предыдущем примере использовались непосредственные данные, описанные непосредственно в первых двух командах (MOV и ADD). Теперь рассмотрим аналогичный пример, в котором значения 0123 и 0025 определены в двух полях сигмента данных. Данный пример позволяет понять как компьютер обеспечивает доступ к данным посредством регистра DS и адресного смещения. В настоящем примере определены области данных, содержащие cоответственно следующие значения: Адрес в DS Шест.знач. Номера байтов 0000 2301 0 и 1 Ассемблер для IBM PC. Глава 2 36 0002 2500 2 и 3 0004 0000 4 и 5 0006 2A2A2A 6, 7 и 8 Вспомним, что шест. символ занимает половину байта, таким oбразом, например, 23 находится в байте 0 (в первом байте) сегмента данных, 01 - в байте 1 (т.е. во втором байте). Ниже показаны команды машинного языка, которые обрабатыва ют эти данные: Команда Назначение A10000 Переслать слово (два байта), начинающее ся в DS по адресу 0000, в регистр AX. 03060200 Прибавить содержимое слова (двух байт), начинающегося в DS по адресу 0002, к регистру AX. A30400 Переслать содержимое регистра AX в слово, начинающееся в DS по адресу 0004. CB Вернуться в DOS. Обратите внимание, что здесь имеются две команды MOV с pазличными машинными кодами: A1 и A3. Фактически машинный код зависит от регистров, на которые имеется ссылка, коли чества байтов (байт или слово), направления передачи данных (из регистра или в регистр) и от ссылки на непосредственные данные или на память. Воспользуемся опять отладчиком DEBUG для ввода данной программы и анализа ее выполнения. Когда отладчик выдал свое дефисное приглашение, он готов к приему команд. Сначала введите команды E (Enter) для сегмента данных: E DS:00 23 01 25 00 00 00 (Нажмите Return) E DS:06 2A 2A 2A (Нажмите Return) Первая команда записывает три слова (шесть байтов) в начало сегмента данных, DS:00. Заметьте, что каждое слово вводилось в обратной последовательности, так что 0123 есть 2301, a 0025 есть 2500. Когда команда MOV будет обращаться к этим cловам, нормальная последовательность будет восстанов лена и 2301 станет 0123, а 2500 - 0025. Вторая команда записывает три звездочки (***) для того, чтобы их можно было видеть впоследствии по команде D (Dump) - другого назначения эти звездочки не имеют. Введем теперь команды в сегмент кодов, опять начиная с адреса CS:100: E CS:100 A1 00 00 03 06 02 00 E CS:107 A3 04 00 CB Ассемблер для IBM PC. Глава 2 37 Теперь команды находятся в ячейках памяти от CS:100 до CS:10A. Эти команды можно выполнить как это делалось ранее. На рис. 2.3 показаны все шаги, включая команды E. На экране дисплея должны появиться такие же результаты, хотя адреса CS и DS могут различаться. Для пересмотра информации в сегменте данных и в сегменте кодов введите команды D (Dump) соответственно: для сегмента данных: D DS:000 (Return) для сегмента кодов: D CS:100 (Return) Сравните содержимое обоих сегментов с тем, что вводилось и с изображенным на рис. 2.3. Содержимое памяти от DS:00 до DS:08 и от CS:100 до CS:10A должно быть идентично рис. 2.3. Теперь введите R для просмотра содержимого регистров и флагов и для отображения первой команды. Регистры содержат те же значения, как при старте первого примера. Команда ото- бразится в виде: 13C6:0100 A10000 MOV AX,[0000] Так, как регистр CS содержит 13C6, то CS:100 содержит первую команду A10000. Отладчик интерпретирует эту команду как MOV и определяет ссылку к первому адресу [0000] в сегменте данных. Квадратные скобки необходимы для указания ссылки к адресу памяти, а не к непосредственным данным. ------------------------------------------------------------ ------------------------------------------------------------ Рис. 2.3. Трассировка машинных команд Если бы квадратных скобок не было, то команда MOV AX,0000 oбнулила бы регистр AX непосредственным значением 0000. Теперь введем команду T. Команда MOV AX,[0000] перешлет cодержимое слова, находящегося по нулевому смещению в сегменте данных, в регистр AX. Содержимое 2301 преобразуется командой в 0123 и помещается в регистр AX. Следующую команду ADD можно выполнить, введя еще раз команду T. В результате содержимое слова в DS по смещению 0002 прибавится в регистр AX. Теперь регистр AX будет содержать сумму 0123 и 0025, т.е 0148. Следующая команда MOV [0004],AX выполняется опять по вводу T. Эта команда пересылает содержимое регистра AX в слово по смешению 0004. Для просмотра изменений содержимого сегмента данных введите D DS:00. Первые девять байт будут следующими: значение в сегменте данных: 23 01 25 00 48 01 2A 2A 2A величина смещения: 00 01 02 03 04 05 06 07 08 Ассемблер для IBM PC. Глава 2 38 Значение 0148, которое было занесено из регистра AX в сег мент данных по смещению 04 и 05, имеет обратное представле ние 4801. Заметьте что эти шест. значения представлены в правой части экрана их символами в коде ASCII. Например, шест.23 генерируeтся в символ #, а шест.25 - в символ %. Три байта с шест. значениями 2A высвечиваются в виде трех звездочек (***). Левая часть дампа показывает действительные машинные коды, которые находятся в памяти. Правая часть дампа только помогает проще локализовать символьные (сроч ные) данные. Для просмотра содержимого сегмента кодов введите D DS:100 так, как показано на рис. 2.3. В заключении введите Q для завершения работы с программой. МАШИННАЯ АДРЕСАЦИЯ ------------------------------------------------------------ Для доступа к машинной команде процессор определяет ее адрес из содержимого регистра CS плюс смещение в регистре IP. Например, предположим, что регистр CS содержит шест. 04AF (действительный адрес 04AF0), а регистр IP содержит шест. 0023: CS: 04AF0 IP: 0023 Адрес команды: 04B13 Если, например, по адресу 04B13 находится команда: A11200 MOV AX,[0012] | Адрес 04B13 то в памяти по адресу 04B13 содержится первый байт команды. Процессор получает доступ к этому байту и по коду команды (A1) oпределяет длину команды - 3 байта. Для доступа к данным по смещению [0012] процессор опреде ляет aдрес, исходя из содержимого регистра DS (как правило) плюс cмещение в операнде команды. Если DS содержит шест.04B1 (реальный адрес 04B10), то результирующий адрес данных определяется cледующим образом: DS: 04B10 Смещение: 0012 Адрес данных: 04B22 Предположим, что по адресам 04B22 и 04B23 содержатся следующие данные: Содержимое: 24 01 | | Адрес: 04B22 04B23 Ассемблер для IBM PC. Глава 2 39 Процессор выбирает значение 24 из ячейки по адресу 04B22 и помещает его в регистр AL, и значение 01 по адресу 04B23 - в регистр AH. Регистр AX будет содержать в результате 0124. В процессе выборки каждого байта команды процессор увеличивает значение регистра IP на единицу, так что к началу выполнения следующей команды в нашем примере IP будет содержать смещение 0026. Таким обpазом процессор теперь готов для выполнения следующей команды, которую он получает по адресу из регистра CS (04AF0) плюс текущее смещение в регистре IP (0026), т.е 04B16. Четная адресация Процессор 8086, 80286 и 80386 действуют более эффективно, eсли в программе обеспечиваются доступ к словам, расположен ным по четным адресам. В предыдущем примере процессор может сделать oдну выборку слова по адресу 4B22 для загрузки его непосредственно в регистр. Но если слово начинается на нечет ном адресе, процессор выполняет двойную выборку. Предполо жим, например, что команда должна выполнить выборку слова, начинающегося по адреcу 04B23 и загрузить его в регистр AX: Содержимое памяти: |хх|24|01|хх| | Адрес: 04B23 Сначала процессор получает доступ к байтам по адресам 4B22 и 4B23 и пересылает байт из ячейки 4B23 в регистр AL. Затем он получает доступ к байтам по адресам 4B24 и 4B25 и пересылает байт из ячейки 4B23 в регистр AH. В результате регистр AX будет содержать 0124. Нет необходимости в каких-либо специальных методах программирования для получения четной или нечетной адрессации, не обязательно также знать является адрес четным или нет. Важно знать, что, во-первых, команды обращения к памяти меняют слово при загрузке его в регистр так, что получается правильная последовательность байт и, во-вторых, если программа имеет частый доступ к памяти, то для повышения эффективности можно определить данные так, чтобы они начинались по четным адресам. Например, поскольку начало сегмента должно всегда находиться по четному адресу, первое поле данных начинается также по четному адресу и пока следующие поля определены как слова, имеющие четную длину, они все будут начинаться на четных адресах. В большинстве случаев, однако, невозможно заметить ускорения работы при четной адрессации из-за очень высокой скорости работы процессоров. Ассемблер имеет директиву EVEN, которая вызывает выравнив нивание данных и команд на четные адреса памяти. ПРИМЕР МАШИННЫХ КОДОВ: ОПРЕДЕЛЕНИЕ РАЗМЕРА ПАМЯТИ ------------------------------------------------------------ Ассемблер для IBM PC. Глава 2 40 В первом упражнении в данной главе проводилась проверка размера памяти (RAM), которую имеет компьютер. BIOS (базовая система ввода/вывода) в ROM имеет подпрограмму, которая определяет pазмер памяти. Можно обратиться в BIOS по команде INT, в данном cлучае по прерыванию 12H. В результате BIOS возвращает в регистр AX размер памяти в килобайтах. Загрузите в память DEBUG и введите для INT 12H и RET следующие машинные коды: E CS:100 CD 12 CB Нажмите R (и Return) для отображения содержимого регистров и первой команды. Регистр IP содержит 0100, при этом высвечивается команда INT 12H. Теперь нажмите T (и Return) несколько раз и просмотрите выполняемые команды BIOS (отладчик показывает мнемокоды, хотя в действительности выполняются машинные коды): STI PUSH DS MOV AX,0040 MOV DS,AX MOV AX,[0013] POP DS IRET В этот момент регистр AX содержит размер памяти в шестнадца тиpичном формате. Теперь введите еще раз команду T для выхода из BIOS и возврата в вашу программу. На экране появится команда RET для машинного кода CB, который был введен вами. СПЕЦИАЛЬНЫЕ СРЕДСТВА ОТЛАДЧИКА ------------------------------------------------------------ В операционной системе DOS версии 2.0 и старше можно использовать DEBUG для ввода команд ассемблера так же, как и команд машинного языка. На практике можно пользоваться обоими методами. Команда A Команда отладчика A (Assemble) переводит DEBUG в режим приема команд ассемблера и перевода их в машинные коды. Установим н