рисущими всей массе пчел, то есть законами улья. Изучая поведение отдельных пчел, мы узнаем очень и очень многое, но не узнаем главного -- законов улья, которые вовсе не складываются механически из закономерностей поведения индивидов. То же можно сказать о современной физике и космологии: они изучают отдельные частицы, волны, поля, но в их инструментарии почти нет методов, способов и математического аппарата для описания целого. Да и задача такая практически не ставится (за исключением разве что теории множеств). * См.: Шипов Г.И. Теория физического вакуума: Новая парадигма. М., 1993. С. 362. Применительно к человеку такая целостность в общем уже определена. Это -- космическая среда во всем ее многообразии и неисчерпаемости. Последовательное применение методологии космизма позволяет более четко и всесторонне постичь саму проблему. Так в пределах земного шара -- микроскопической песчинки в масштабах Вселенной -- целостностью, о которой упомянуто выше и в границах которой осуществляется вся многогранная деятельность живых индивидов, выступает биосфера (ее теорию с наибольшей полнотой разработал В.И. Вернадский). Биосфера и есть тот энергетический котел в пределах Земли и окружающих ее полей, общий для всего живого, из которого осуществляется подпитка и накачка всех жизненных систем и отдельных их элементов -- растений, животных, людей, находящихся в рамках биосферы в неразрывном единстве. Человек неотделим от природы во всем ее многообразии. Он не может существовать без света, воздуха и воды, без растений и животных, дающих ему пищу. Все названное и образует энергетическую основу жизни. Но этим не ограничивается жизнесфера людей. Связанная с невидимыми космическими силами (гравитация, антигравитация, фотонное и противофотонное поле -- тьма), она простирается в бескрайние просторы Вселенной. В границах ноосферы и техносферы (второй искусственной природы) громадное значение приобретает информационное поле, создаваемое устной и письменной речью, печатью, радио, телевидением, разного рода компьютерами, произведениями искусства и сопряженное множеством выявленных и невыявленных каналов с неисчерпаемым энергополем Большого и Малого Космоса. Наконец, глубинные неизведанные пока силы обеспечивают мышление, генетическую преемственность поколений, прием и передачу всех видов информации в пределах целостных материальных систем, а в конечном счете -- внутри информационного "банка" Вселенной. Прибежище тьмы, однако, вовсе не одно лишь космическое далеко или покров ночи. Это просто иллюзия ясного солнечного дня, что весь мир вокруг нас наполнен светом или что человек -- исключительно "дитя света". Уже под ногами, в недрах Земли безраздельно царит абсолютная тьма. Да и внутри человеческого тела отнюдь не царство света, а в основном доминирует тьма. А сон? Он ведь тоже -- царство тьмы, хотя и нарушаемое картинами сновидений. Почти треть жизни нормального человека проходит во сне, представляющем собой естественное и неотъемлемое состояние жизненных процессов. Еще один поразительный факт: свободное космическое пространство наполнено бесчисленными летящими отовсюду и во все стороны фотонами; их мириады пронизывают ежемгновенно любой и каждый уголок Вселенной. Но в Космосе от этого не делается светлей. Сами по себе фотоны невидимы и не светятся. Свет возникает при их взаимодействии с вещественной средой, например, при попадании на сетчатку глаза. Так что же тогда первично -- свет или тьма, если последняя есть всегда, а фотоны возникают только при определенных условиях? Вот и получается, что тьма более фундаментальная физическая субстанция, не сводимая к пустому пространству, лишенному света. Тьма -- особая форма движения материи, ее исконно-первичное состояние. Она -- носитель, а в ряде случаев и источник света. Она же (но во взаимодействии со светом) -- аккумулятор информационного поля Вселенной. Сначала и всегда была Тьма и потом только появился Свет -- о том и Библия говорит. И все же человек всегда стремится к свету, радуется ему, прославляет его, даже обоготворяет в виде светил -- Солнца, Луны и звезд. Без света немыслимо ничто живое -- ни растения, ни животные. Но вот парадокс -- о свете, его подлинной природе и истинных закономерностях человечество до сих пор знает столь же мало, как и о тьме. Среди ученых даже сложился афоризм: "Самое темное в науке -- это свет!". Конечно, геометрическая оптика, электромагнитная и квантовая теория многое приоткрыли в тайнах природы. Однако хорошо известно: чем больше мы узнаем и вырастает объем нашего знания, тем больше у этого массива точек соприкосновения с неисчерпаемым океаном незнания. Следовательно, тем больше возникает все новых и новых проблем. Современная фотонная теория опирается на сложнейший математический аппарат, в ней почти отсутствуют наглядные представления. Более проста и понятна активно разрабатываемая в последние годы тороидальная модель фотона (В.П. Селезнев и др.), вполне сопрягаемая с торсионной теорией вакуума. Согласно тороидальной модели, фотон представляет собой объемное кольцо в виде тора ("баранки"), обладающее переменной скоростью, что дает возможность объяснить все известные световые явления, предложить новые высокоэффективные технологии и преодолеть многие противоречия и тупики, возникшие на пути развития современной физики, астрономии и космологии*. Но и это всего лишь шаг для прорыва познания к подлинному пониманию фундаментальной роли света в эволюции Универсума и Социума. Ориентирами же для дальнейшего продвижения вперед могут служить идеи, сформулированные еще в начале нынешнего века выдающимся русским физиком Н.И. Умовым и великим первооткрывателем космической эры К.Э. Циолковским. Умов последовательно придерживался энергетическо-информационного подхода в постижении Вселенной как "вечного настоящего"; его математическое обоснование взаимодействия массы и энергии на три десятилетия опередило соответствующие формулы и выводы теории относительности. Энергетизм распространялся Умовым и на человека -- "сына неба [Космоса] и светозарного эфира", порожденного "океаном лучистой энергии"**. Циолковский пошел еще дальше: он не только провозгласил космическо-световое бытие человечества основой его существования и развития, но и рисовал грандиозные картины лучисто-энергетического будущего цивилизации. В разработанной Теории Космических Эр основоположник отечественной и мировой космонавтики предсказал четыре основных стадии информационно-энергетического развития Вселенной и Человечества: 1. Эра рождения; 2. Эра становления; 3. Эра расцвета; 4. Эра терминальная. Каждая из эр должна продолжиться, по Циолковскому, от нескольких до сотен миллиардов лет. На конечной же стадии эволюции Вселенной вещество превратится в свет, и человечество перейдет "в лучистую форму высокого уровня", станет бессмертным во времени и бесконечным в пространстве. Так возникнет "лучистое человечество"***. Другими словами, человек выработает и обретет способность растворяться в энерго-информационном поле, черпая и обращая в свою пользу его неисчерпаемый потенциал. Микрокосм становится Макрокосмом! * См.: Демин В.Н., Селезнев В.П. К звездам быстрее света: Русский космизм вчера, сегодня, завтра. М., 1993. ** Умов Н.И. Собрание сочинений. М., 1916. Т. 3. С. 414, 495, 517. *** См.: Чижевский А.Л. Теория Космических Эр // Циолковский К.Э. Грезы о Земле и Небе. Тула, 1986. С. 424--427. МНОГОЛИКИЙ ФОТОН В понимани современной науки фотон -- частичка света, которая обладает одновременно и волновыми, и корпускулярными свойствами. Популярно объяснить это никто не берется. Предпочитают обычно ограничиться математическим описанием. Между тем существует вполне доступное даже непосвященным наглядное представление о фотоне. Предоставим вновь слово специалисту в области космических проблем профессору В.П. Селезневу. В данном случае он развивает соответственную тороидальную модель фотона. Попробуем предоставить, - говорит он, - возможный облик фотона или его упрощенную модель, отвергая тем самым сложившееся убеждение о том, что это частица -- "элементарная". Начнем с корпускулярных свойств фотона. Всякая корпускула (микроскопическое тело) должна обладать массой, количеством движения или импульсом, проявляемом в относительном движении. Поток корпускул, падая с какой-то скоростью на поверхность тела, производит механическое давление. Опыты со светом показали, что поток света оказывает давление на поверхность тела (например, зеркала) по тем же закономерностям, что и обычный корпускулярный поток. Это означает, что фотон, как и обычная корпускула, обладает массой, не зависящей от скорости ее движения. Корпускулярные свойства света подтверждаются также фотоэффектом. Но как же корпускулы проявляют свои волновые свойства? Чтобы ответить на этот вопрос, проанализируем движение различных вращающихся тел и остановимся на движении колеса (рис. 116). Пусть оно катится по горизонтальной поверхности с некоторой скоростью. Отметим, что при встрече с препятствием колесо окажет на него силовое давление (удар) как корпускула. Теперь обратим внимание на движение частиц обода колеса при его равномерном движении, каждая частица совершает одновременно два движения -- вперед (поступательное со скоростью С вместе с осью колеса) и вращательное (с угловой скоростью w вокруг оси вращения). Таким образом, траектория движения любой частицы обода представляет собой волнообразную кривую (циклоиду). Следовательно, корпускулярно-волновую природу фотона допустимо объяснить как результат движения корпускулы, летящей со скоростью света и одновременно вращающейся вокруг своего центра масс. Для разъяснения данного вопроса обратимся к математике. Допустим, фотон обладает множеством физических свойств, тогда каждый независимый по своему содержанию физический опыт может раскрыть какую-то одну (в редких случаях две или более) особенность или свойство фотона. Для того, чтобы получить необходимое количество свойств фотона (например, n), требуется иметь такое же количество независимых уравнений, полученных в результате проведения соответствующего количества разных опытов. Решая совместно это уравнение, можем получить n искомых физических свойств фотона, характеризующих более полную картину его природы. В том случае, когда количество опытов, а следовательно, и уравнений, меньше числа искомых характеристик изучаемого объекта (информационная недостаточность), решить задачу становится невозможно. Иногда недостающие уравнения восполняют гипотезами, то есть уравнениями, основанными не на опыте, а на догадке или предположении. В этом случае при совместном решении уравнений (вытекающих из опыта, а также гипотетических) получаются искомые данные, в которых содержатся элементы принятых гипотез. Сказанное означает, что при использовании ошибочных гипотез все результаты решения задачи также будут ошибочными. Попробуем последовательно углубиться в изучение природы фотона, привлекая один за другим только известные экспериментальные результаты. Установлено, что энергия фотона описывается формулой E = mc2. Если бы фотон, как корпускула, двигался поступательно и с постоянной скоростью, то его энергия была равна E1 = 1/2 mc2. Почему же действительная энергия фотона в два раза больше по сравнению с энергией поступательно движущейся корпускулы такой же массы? Ответ на этот вопрос можно найти, если представить форму фотона в виде тороида (аналогично круглой баранке), вся масса m которого расположена на периферии. При вращении такого фотона вокруг оси, перпендикулярной плоскости симметрии тороида, с окружной скоростью равной C = wr, где w -- угловая скорость и r -- радиус фотона, у него появится энергия вращательного движения равная E = 1/2 Jw2 ( J -- момент инерции), учитывая значение J = mr2 для тороида и величину w = c/r, получим E2 = 1/2 mc2. Следовательно, полная энергия фотона будет равняться сумме энергий поступательного E1 и вращательного E2 движений, то есть mc2, что и подтверждает справедливость предположения о тороидальной форме фотона. Следовательно, фотон можно представить в виде быстровращающегося тороида с окружной скоростью равной С, центр масс которого (точка О на рис. 117) летит относительно излучателя со скоростью света -- с. При этом фотон приобретает гидроскопические свойства, вектор его угловой скорости вращения перемещается параллельно самому себе, не поворачиваясь относительно инерциального пространства. Отметим, что плоскость, в которой движутся материальные компоненты фотона, как раз и является плоскостью поляризации света. Свойства поляризации света наблюдаются в природе при прохождении световых лучей в земной атмосфере, а также в оптических экспериментах (при пропускании света через прозрачные вещества, поляризующие его). Рассмотренная модель фотона позволяет определить и физическую сущность постоянной Планка (h). Сопоставляя формулу для определений энергий mc2 = nh, где n -- частота света, приходим к заключению, что постоянная Планка является кинетическим моментом фотона. Величина кинетического момента определяется массой фотона, длиной его радиуса (расстояние от центра вращения до центра масс сечения тороида) и угловой скоростью вращения тороида и не зависит от скорости относительного движения фотона. Все это дает основание принимать кинетический момент фотона за постоянную величину, соответствующую постоянной Планка. Интересно, что же происходит с фотонами во время известных опытов с аннигиляцией элементарных частиц. Экспериментально установлено, что при аннигиляции электрона и позитрона возникает фотон, и, наоборот, при определенных условиях взаимодействия фотон распадается на электрон и позитрон. Вообще-то термин "аннигиляция" (означающий "уничтожение") применен в физике не вполне удачно. В действительности никакого уничтожения массы и энергии в этих превращениях не происходит, и закон сохранения массы -- энергии выполняется совершенно строго. Сам факт возможного разложения фотона на микрочастицы с положительными и отрицательными зарядами дает возможность более детально представить его модель в виде сложного материального образования кольцевой формы. Кольцо фотона не сплошное, а составлено из отдельных микрочастиц, заряженных поочередно положительными и отрицательными зарядами. Для наглядности такую модель можно представить в виде кругового хоровода (рис. 118), в котором мужчины Мi (условно -- отрицательно заряженные микрочастицы) чередуются с женщинами Жi (положительно заряженные микрочастицы). Удерживая друг друга за руки (имитация сил притяжения положительно и отрицательно заряженных микрочастиц), участники хоровода сохраняют его целостность, несмотря на действие центробежных сил инерции, стремящихся разорвать кольцо хоровода. В отличие от известной модели атома Резерфорда--Бора, в которой содержится ядро, а вокруг него вращаются по орбитам электроны (силы взаимодействия направлены радиально), предлагаемая здесь модель фотона не содержит ядра. Все положительные и отрицательные микрочастицы движутся по одной и той же круговой орбите, а силы взаимодействия Qi (i=1, 2, ... n) между ними направлены по хордам, соединяющим центры масс микрочастиц. Для существования такого "хоровода" необходимо, чтобы число положительно и отрицательно заряженных частиц было одинаковым. Следовательно, суммарный заряд в такой модели фотона должен быть равен нулю. Известно, что реальные фотоны электрически нейтральны. Следовательно, модель по данному признаку совпадает с реальностью. Зная размеры фотона (длина волны) и его массу (из опыта с давлением света), можно из уравнения его динамики движения, учитывающего равенство сил взаимодействия между электрическими зарядами и силами инерции масс микрочастиц, найти общее число микрочастиц и их массу (масса фотона равна сумме масс микрочастиц). Рассматривая подобную кольцеобразную модель фотона, можно заключить, что чем меньше диаметр этого кольца, тем короче длина волны света. Однако не возникает ли здесь противоречия: ведь известно, чем меньше l и больше частота n, тем значительнее энергия фотона. Насколько удовлетворяет этим требованиям рассматриваемая модель фотона? Подобное сомнение вполне закономерно. Чтобы разрешить его, необходимо рассмотреть динамику движения микрочастицы фотонного кольца, обозначим ее массу mi (i = 1, 2, ... N, N -- число микрочастиц в фотоне). Если фотонное кольцо вращается с угловой скоростью w = c/r,r -- радиус фотонного кольца, то центробежная сила инерции каждой микрочастицы F = miw2r уравновешивается силами кулоновского притяжения двух соседних микрочастиц (справа и слева от mi). P = 2Qsina, где Q = kЧq2/l2; l = ar -- расстояние между центрами микрочастиц, a = 2p/N -- центральный угол между соседними микрочастицами, q -- электрический заряд каждой микрочастицы. Приравнивая силы F=Р, после элементарных преобразований получим величину энергии модели фотона: E=mc2= AN2 AN2 w r c2 где А = kЧq2/p -- постоянная величина. Из приведенных формул следует, что при сохранении неизменным количества микрочастиц в фотоне N его энергия возрастает при уменьшении радиуса фотонного кольца r и, соответственно, увеличении частоты его вращения w = c/r. При этом расстояния (1) между микрочастицами уменьшаются, а силы притяжения Q возрастают. Таким образом, чтобы эти возросшие силы притяжения уравновесить центробежными силами, фотон должен вращаться с большей угловой скоростью. Следовательно, рассматриваемая модель фотона удовлетворяет не только здравому смыслу, но и энергетическим формулам Эйнштейна и Планка. На этом, по-видимому, исчерпываются возможности более детального представления модели фотона, основанного на системном подходе и учете данных известных на сегодня физических опытов со светом. Системный подход позволяет изучить свойства любых других "элементарных" частиц до такого уровня детализации, который обусловлен количеством накопленной экспериментальной информации. Вполне естественно возникает вопрос: как можно представить процесс излучения фотона, обладающего рассмотренной выше структурой? Далее проанализируем особенности предлагаемой модели фотона при различных ситуациях его существования. Сопоставляя размеры элементарных частиц -- электрона, протона или атома -- с тороидальным фотоном, замечаем, что фотон по своим размерам намного превосходит эти частицы, а его масса, наоборот, на несколько порядков меньше каждой из масс этих частиц. Это дает основание полагать, что фотон, притягиваясь к какой-либо частице охватывает ее своим кольцом-тороидом. Можно представить себе такую модель строения элементарных частиц вещества: вокруг каждой из них вращаются кольцеобразные фотоны Фi (i = 1, 2, ... к) наподобие колец Сатурна (рис. 119). Чем короче световая волна, тем меньше диаметр di фотонного кольца и расстояние его от поверхности частицы, тем сильнее взаимодействие между ними. Если частица будет тормозиться или колебаться вследствие удара или изменения температуры тела, то при определенных условиях силы инерции массы фотона преодолеют силу его взаимодействия с частицей, вследствие чего произойдет срыв фотонного кольца с этой частицы, то есть излучение кванта света. По мере возрастания ускорений движения частицы (например, при повышении температуры тела) от нее будут отделяться фотоны все меньшего и меньшего диаметра, обладающие большими силами взаимодействия с частицей. Подобный процесс наблюдается на практике: чем выше температура тела, тем более коротковолновый спектр света им излучается. Излученный фотон движется в вакууме равномерно и прямолинейно со скоростью света относительно излучателя. Если на своем пути он не встречает другие тела, не отражается и не поглощается ими, то он летит в пространстве, будучи невидим каким-либо наблюдателем. Увидеть такой фотон можно в том случае, если он непосредственно попадает в глаз. Вследствие невидимости фотонов, свободно летящих в космическом пространстве, наблюдателю, находящемуся в космическом летательном аппарате (КЛА) на большой высоте (в стратосфере и выше), межзвездное пространство представляется абсолютно черным. Голубой цвет неба в дневное время, который видит человек в повседневной жизни, является следствием рассеяния и поглощения потоков солнечного света атомами и молекулами воздуха. В последнее время тороидальные модели сделались объектом пристального внимания ученых. Особенно перспективными представляются они при познании глубинных уровней строения материи. В полной мере сказанное относится и к раскрытию тайн света (и тьмы). Фотон по-прежнему таит в себе множество загадок. Вот одна из них. В каждом кубическом сантиметре космического пространства содержится N фотонов, несущих практически полную информацию обо всех объектах Вселенной, численность которых в принципе бесконечна. Спрашивается: каким именно образом ограниченное количество фотонов передает информацию о таком бесконечном числе объектов? И наоборот: как каждый отдельно взятый конечный объект передает по существу бесконечное число фотонов, которые должны наполнить информацией о данном конечном объекте всю бесконечную Вселенную (дабы в каждой точке пространства содержался необходимый объем информации)? ЗАГАДКИ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ У световых фотонов и их потоков, помимо тайны происхождения и самой их физической природы, есть еще одна, не менее волнующая загадка, связанная с закономерностями их распространения. Данная проблема представляется актуальной в рамках теории относительности, или по-другому -- релятивистской теории (от лат. relativus -- относительный). Вопреки распространенному мнению и несмотря на устоявшееся наименование, теория относительности на самом деле является теорией типичной абсолютности, в которой на месте старых низвергнутых абсолютов были немедленно воздвигнуты новые (что обычно предпочитают замалчивать). На эту характерную черту научного детища Эйнштейна, кстати, обращал внимание еще Макс Планк: одна из его работ на данную тему так и называлась -- "От относительного к абсолютному" (ее перевод на русский язык публиковался отдельной брошюрой единственный раз в Вологде в 1925 году). В релятивистской теории абсолютизировано все -- от оснований до следствий. Имеются также и неявные, замаскированные абсолюты, играющие тем не менее роковую и самоубийственную роль. Так, в теории относительности, вопреки очевидности и формально провозглашенному равноправию всех (то есть неограниченного множества) иперциальных систем отсчета, абсолютизируются всего лишь две из них, находящиеся друг с другом в совершенно конкретных отношениях равномерного и прямолинейного перемещения (что, собственно, и описывается при помощи преобразований Лоренца). А формально-математические результаты, полученные применительно только к этим двум системам отсчета, затем произвольно обобщаются и экстраполируются на весь многообразный мир. На этой абсолютизированной основе и покоится все здание теории относительности, обросшее за время ее существования множеством пристроек. В действительности -- и в этом суть -- количество соотносящихся друг с другом физических тел и процессов или же материальных систем -- неисчерпаемо. Причем закономерности их соотношения (существуют особые законы отношения, как правило, никем не учитываемые) таковы, что отношения даже трех систем -- а тем более и множества -- не тождественны отношению двух (то есть минимума). Кстати, и в специальной теории относительности (СТО), вопреки господствующему представлению, действуют не две, а три системы отсчета: третьей выступает свет (то есть совокупность рассмотренных выше фотонов) -- реальный, самостоятельный и независимый от механического перемещения инерциальных систем электромагнитный процесс. В Лоренцовых преобразованиях реальное световое движение отображено в виде самостоятельного члена -- с, причем таким образом, что с ним (а точнее -- с его абсолютизированной скоростью, возведенной в ранг абсолютной константы) соподчиняются остальные два члена реального трехэлементного отношения, а именно -- движущаяся и покоящаяся системы отсчета. Уже отсюда следует, что распространенные интерпретации преобразований Лоренца некорректны по той простой причине, что не учитывают трехчленность описываемой в них реальной системы, принимаемой за двухчленную. Между тем достаточно сопоставить с двумя (или тремя) системами отсчета, абсолютизированными в рамках СТО, еще одну или несколько -- и весь храм релятивистской физики зашатается. Ничто не мешает, к примеру, взять 4-5-10-100 и т.д. систем отсчета и произвести поочередные или групповые преобразования их пространственных и временных координат. И всякий раз перед изумленным взором будет открываться "новый дивный мир", который зачастую не способен вместить человеческое воображение, если только не отвлечься от того самоочевидного факта, что каждая из образуемых в результате математических преобразований моделей действительности -- всего лишь игра нашего теоретического мышления или, как говорили в старину, спекулятивная конструкция, подгонять под которую природу -- одно из самых бесполезных и неблагодарных дел. Зыбкость релятивистской картины мира обнаруживается, если произвести "обращение" положенных в ее основу формул. Поскольку все системы отсчета равноправны, постольку любую из них можно считать условно покоящейся, в таком случае другая (или другие) будет условно движущейся. Например, пуля, выпущенная из пистолета, может быть принята в качестве условно покоящейся системы отсчета; в таком случае сам пистолет, стрелок, земная поверхность, окружающая среда и т.д. могут быть рассмотрены как движущиеся относительно условно неподвижной пули. Чтобы воочию убедиться в искусственности и абсурдности подобного подхода в понимании фундаментальных закономерностей материального мира, в качестве условно неподвижной системы отсчета достаточно взять одиночный фотон (или группу фотонов). Оказывается, что при этом весь остальной объективный мир во всем его многообразии и неисчерпаемости должен, согласно канонам СТО, разлетаться со световой скоростью относительно условно неподвижного фотона. Аналогичным образом можно рассмотреть и движение фотонов относительно уже неоднократно упоминавшейся космологической сингулярности (бесконечно плотной точки, радиус которой близок к нулю) после пресловутого "Большого взрыва". Любой фотон, находящийся на границе расширяющейся световой сферы, может быть принят за условно неподвижную систему. В таком случае сингулярная точка должна рассматриваться как система координат, удаляющаяся со световой скоростью от каждого такого фотона. Нет необходимости добавлять, что одновременное удаление центральной точки сразу от всех фотонов, расположенных по кромке сферической волны, является верхом алогичности и бессмысленности, на чем вряд ли станут настаивать даже самые твердолобые апологеты релятивистской теории. Тем самым наглядно обнаруживается принцип самоликвидности, изначально заложенный в релятивистской теории: достаточно последовательно довести до логического конца ее собственные постулаты (то есть произвести обращение преобразований), и вся теоретическая система самоликвидируется ввиду непреодолемых противоречий. Но в теории относительности абсолютизируются отношения не только инерциальных систем и их составляющих, но также и особый способ определения одновременности удаленных событий с помощью посылки электромагнитного сигнала к удаленному объекту и соответствующих расчетов после его возвращения назад. Однако, подобный трудноосуществимый способ не является единственно возможным. Во-первых, синхронизация часов может быть произведена при помощи не только искусственных, но и естественных сигналов. Естественными природными сигналами являются, к примеру, вспышки сверхновых звезд, распространяющиеся в виде гигантских сферических световых волн в Галактике и далеко за ее пределами. Так, в феврале 1987 года все информационные агентства мира собщили о вспышке сверхновой звезды в галактике Большое Магелланово Облако, которая произошла 170 тысяч лет назад (такое время потребовалось свету, чтобы достичь Земли). Сферическая волна, образовавшаяся в результате вспышки этой сверхновой звезды, как бы живет самостоятельной жизнью во Вселенной, подчиняясь конкретным физическим законам. Подобно колоссальному, космических размеров мыльному пузырю, непрерывно расширяющемуся со скоростью света и охватывающему все новые и новые просторы Вселенной, она "засекает" фронтом своего прохождения неисчислимое множество разнообразных материальных объектов. Отсюда следует, что прохождение световой волны через определенные участки Галактики, фиксируемое в виде начала вспышки (или ее окончания), является одновременным для всего неограниченного множества точек, расположенных на одинаковом расстоянии от источника. Все события, происходящие в данный момент на этих участках космического пространства, будут одновременными. Если в данных точках разместить атомные часы, которые включались бы в момент прохождения волны, то все эти часы, разделенные каким угодно расстоянием, заработали бы одновременно и пошли синхронно. Во-вторых, одновременность можно зафиксировать без всяких сигналов, опираясь в основном на геометрические и тригонометрические методы (хотя и учитывая при этом физические и космические процессы). Например, добиться синхронизации удаленных друг от друга часов вполне допустимо путем измерения углов. Так, на основе учета периода собственного вращения вокруг оси Земли и Марса, а также их движения вокруг Солнца, на обеих планетах можно найти две такие точки, где заранее выбранная звезда будет наблюдаться под одним и тем же углом. Данный момент и позволит синхронизировать некоторые исходные точки временного отсчета на обеих планетах (рис. 120). Предлагаемый способ определения одновременности вовсе не ограничен пределами Солнечной системы. Ничто не мешает расширить его до галактических масштабов. Обозначим Землю по-прежнему точкой А, точку В свяжем с каким-нибудь материальным объектом в противоположном конце нашей Галактики, а точкой С обозначим удаленную соседнюю галактику, но такую, которая находилась бы под удобным для измерений углом (рис. 121). (Конечно, более наглядным вариантом для разъясняемого случая явилась бы объемная модель Вселенной, но чертеж также позволяет уловить суть дела.) Если перпендикулярно к направлениям АС и ВС в точках А и В запустить игрушечные волчки с засечками, то моменты прохождения засечек через линии АС и ВС были бы приблизительно одновременны (разумеется, с учетом конечной скорости света). Волчок -- слишком грубый измерительный "прибор", но нам он нужен только для аналогии. Для абсолютно точных замеров уместно воспользоваться оптическими (лазерными) гироскопами (приборами, где два лазерных луча движутся навстречу друг другу по замкнутому, близкому к окружности пространству). Предположим, что на линиях АС и ВС, перпендикулярных к бегающим лазерным лучам, установлены счетчики фотонов. Каждое "щелканье" счетчика в точке А будет одновременным со "щелканьем" в точке В. Интервалы между двумя "щелканьями" тоже одновременны. Конечно, все это несколько усложненные и громоздкие мысленные эксперименты, требующие дополнительной информации об условиях их проведения. Но они понадобились, чтобы продемонстрировать две простые истины: 1) Сигнальный способ определения одновременности, развиваемый в релятивистской теории, не является единственно возможным. 2) Атомные часы в любой точке Вселенной идут синхронно и отбивают ритм настоящего, фиксируя в каждом уголке бесконечного материального мира неуловимое "теперь" (каждый промежуток времени между тактами, отбиваемыми атомными часами, равен одной тысячемиллионной доле секунды). Сказанное -- самоочевидные факты. Ибо настоящее не может быть в разных точках разным: скажем, в нашей Галактике оно настоящее, а в какой-либо другой -- прошлое. Проблема эмпирического мгновения -- одна из глубочайших загадок природы, при решении которой вскрывается реальное содержание, не менее богатое, чем то, которое нами осознается в безбрежности пространства-времени Космоса. На примере распространения сферической световой волны наглядно видно, что любые события, оказавшиеся в определенный момент времени на линии фронта прохождения волны, объективно происходят в одно и то же мгновение. В литературе широко распространена точка зрения, согласно которой понятие мгновенности не имеет физического смысла, поскольку оно будто бы является следствием преодоленного наукой представления о дальнодействии и бесконечных скоростях. Однако подобный подход вытекает из глубоко укоренившегося мнения об отсутствии скоростей, превышающих скорость света. Мифический закон "предельности скорости света", представляющий собой типичную абсолютизацию и фетишизацию конкретного математического соотношения, не выдерживает никакой критики. Вывод о существовании якобы непреодолимого "светового барьера" зиждется на сугубо формальных основаниях: подкоренное выражение релятивистского коэффициента ___________ Ц 1- V2 C2 обращается в нуль, если V = с , а извлечение корня из нуля недопустимо. Законы математики есть законы математики -- против них ничего не попишешь. Однако одно дело объективные физические закономерности, и совсем другое -- их математическое описание. Все эффекты, вытекающие из преобразований Лоренца, касаются в первую очередь численных значений, возникающих из соотношения между механическим перемещением инерциальной системы отсчета и процессом распространения света. Данное объективное отношение, будучи выражено в математической форме, может принимать любые численные значения, включая нулевые и бесконечные. Но это вовсе не налагает непременного запрета на движение в зависимости от того, что получается в результате конкретных математических преобразований или расчетов -- нуль или бесконечность. Если вместо скорости света подставить в релятивистские формулы скорость звука (что вполне допустимо, и такие подстановки, отображающие реальные физические ситуации, делались), то получится аналогичный результат: подкоренное выражение релятивистского коэффициента способно обратиться в нуль. Но никому же не приходит в голову утверждать на этом основании, будто бы в природе недопустима скорость, превышающая скорость звука. Чем же в таком случае оправдать абсолютизацию математического отношения, из которого якобы вытекает "предельность скорости света"? Уже многие ревностные адепты релятивистской теории признали нелепость предположения о невозможности превзойти скорость счета в вакууме. Уже разработана экспериментально подтвержденная торсионная теория (о которой подробно говорилось выше), допускающая любые скорости, превышающие скорость света. [Добавим, что еще раньше то же самое на основе своей тороидальной модели фотона теоретически обосновал В.П. Селезнев; полученные выводы были подтверждены с помощью оригинальной установки, в основу которой были положены лазерные гироскопы и система зеркал]. Уже получили объяснение пульсары -- звездные объекты с мощными источниками радиоимпульсов. Пульсар, как игрушка-волчок, быстро вращается вокруг собственной оси, а направленный радиолуч за короткий промежуток времени описывает во Вселенной гигантские окружности, задевая при этом и нашу Землю. Скорость, с которой мчится по кругу конец радиолуча, значительно превосходит скорость света. Наконец, уже обнаружены внегалактические объекты, обладающие собственной сверхсветовой скоростью. А рьяные авторы, талмудистски трактующие релятивистские формулы, продолжают по-прежнему дезориентировать доверчивых читателей, накладывая бессмысленные запреты и ограничения как на законы природы, так и на процесс общенаучного познания*. Казалось бы, релятивистская теория с самого начала задает нам космический настрой, задает направления и ориентиры, позволяющие постигнуть глубинные закономерности структуры и эволюции Вселенной. Однако при ближайшем рассмотрении исходных оснований и конечных выводов, при раскрытии их материальных корней обнаруживается, что базисные понятия, принципы и добытые с их помощью результаты имеют совершенно иное объективное содержание, иногда прямо противоположное тому, которое виделось творцам релятивистской картины мира. Однобокая и мистифицированная, она оказывается наименее совместимой с живым, многоцветным и неисчерпаемым Космосом, и прежде всего потому, что подгоняет его уникальное многообразие под тощие абстракции, оторванные от той самой природной действительности, которую они отображают. ОТНОСИТЕЛЬНОСТЬ -- ФУНДАМЕНТАЛЬНАЯ ТАЙНА МИРОЗДАНИЯ В проанализированных фактах проявляется методологическая абстрактность релятивистских теоретических интерпретаций, их полнейший отрыв от конкретной действительности или, говоря философским языком, умышленный уход от конкретного анализа конкретной ситуации. Самой абстрактной из всех абстракций в системе современного теоретического знания выступает понятие "отношение", являющееся основополагающим во всех естественных науках, связанных с математикой, и в самих математических дисциплинах. Между тем данное понятие, как ни странно, не было подвергнуто методологическому анализу даже в релятивистской теории, где понятие "отношение" положено в само название теории относительности. Странная, скажем прямо, ситуация для науки: объявляют принцип относительности исходным, возводят в ранг критерия применительно ко всем остальным следствиям, но не задаются главным, коренным вопросом, что же такое относительность как ипостась реальности и что такое образующие ее отношения как объективная действительность. Другими словами, наука довольствуется чистой абстракцией "отношение". Между тем относительность -- всеобщее универсальное свойство материального мира, проистекающее из его космического всеединства. В данном случае относительность выступает как всеобщее и неотъемлемое свойство ее природы, поскольку каждое из конечных проявлений находится в неисчерпаемых отношениях со всеми остальными. Однако в реальных познавательных ситуациях относительность изучается, как правило, не в качестве всеобщего и универсального свойства (такая задача, да и то отчасти, стоит только перед философией), а в виде совершенно определенных отношений между определенными вещами или же элементами, организованными в целостную систему. В таком случае об относительности говорят, во-первых, в смысле к