я. Приведу вам один пример. Володарский поднимает со стола толстую книгу в синем переплете. - Очередное наше издание. Все цифры экономики государства за прошлый год. И не просто цифры, а гораздо больше - экономический анализ, в котором каждый показатель приобретает свое убедительное значение. Выступая на XXIV съезде КПСС, Леонид Ильич Брежнев говорил, что ежедневное производство общественного продукта в СССР сегодня в 10 раз больше, чем в конце тридцатых годов. Страна дает его в день почти на 2 миллиарда рублей. А что это такое? Это сумма, которой оценивается вся валовая продукция нашей страны. Разве это просто цифра- 2 миллиарда рублей? Это показатель нашего грандиозного рывка вперед, показатель нашей силы и устойчивости. Володарский медленно поглаживает рукой небольшую фигуру металлического кузнеца, украшающую чернильный прибор на его столе. - Металл...- говорит он раздумчиво.- Взять ту же сталь. Она, как известно, определяет экономический потенциал страны. Это знают все. В 1930 году мы производили ее около 6 миллионов тонн. В 1950-м - 27 миллионов, в 1965-м - 91, а в 1970-м- 116! Подумать только - всю сталь, которую мы делали в 1930 году, мы получаем сейчас за 17 дней! А в новой пятилетке, когда мы будем производить ее 142-150 миллионов тонн, мы превзойдем уровень Соединенных Штатов Америки. Опять цифры. И опять поэзия роста. - И так везде,- продолжает Володарский.- Приведу вам еще несколько примеров. 1950 год. СССР производит 5,5 миллиона тонн минеральных удобрений. В 1970-м - в 10 раз больше, 55 миллионов. А в конце Девятой пятилетки - 90 миллионов тонн! А производство тракторов? 1950 год-117 тысяч, 1965 год - 355 тысяч, 1970-й - 459 тысяч, а в 1975 году страна получит 575 тысяч стальных коней. Вспомните ленинские слова о ста тысячах машин для деревни. И вновь, казалось бы, сухие цифры приобретут конкретную плоть, государственный смысл. Вы скажете, как журналисты,- обращается к нам Лев Маркович,- поэзия роста, поэзия цифр... Но никогда не следует забывать, что за этой поэзией встает суровая проза напряженного труда, труда всей страны. Вы, вероятно, обратили внимание,- продолжает Володарский,- на поразительный по своей убедительности ряд цифр, приведенных в докладе на съезде Алексеем Николаевичем Косыгиным. Говоря о темпах экономического роста, Председатель Совета Министров привел сравнительные цифры темпа развития крупнейших капиталистических государств и нашей страны. Кому сколько времени понадобилось для удвоения национального дохода? США - 20 лет, Англии - более 30, ФРГ - почти 15, нашей стране-10. Для того чтобы удвоить объем производства промышленной продукции, США потребовалось 18 лет, Англии - 22 года, ФРГ-более 11 лет, Советскому Союзу - 8,5 лет. Вдумайтесь в эти цифры, и вы почувствуете не только их политическое значение, но и ту скрытую за ними колоссальную работу, которую провел советский народ для того, чтобы вывести нашу страну в число самых передовых в мире. Сейчас общепризнано, что Советский Союз - вторая страна в мире после США по экономическому потенциалу. Главное, что отличает нас от капиталистических стран,- это стабильность, устойчивость экономики. Ее не потрясают спады и депрессии. В нынешнем году прирост нашего национального дохода должен составить шесть процентов. Мы не всегда вдумываемся в эту цифру. А между тем каждый процент прироста - это примерно 3 миллиарда рублей. Так что только в этом году наш национальный доход вырастет на 15-17 миллиардов рублей, а за годы пятилетки эта цифра составит около 100 миллиардов рублей. - Но как же ЦСУ,- спрашиваем мы,- концентрирует все эти цифровые данные, связанные с экономикой нашей страны? - О, это огромная работа очень большого коллектива людей,- отвечает Л. М. Володарский.- Все сведения, которые мы получаем, проходят длинный путь. Ведь в каждой республике, в каждой области и крае концентрируются и обрабатываются сведения изо всех отраслей народного хозяйства. Эти цифры поступают к нам. Еженедельно мы имеем все данные по стране: сколько убрано хлеба, как обстоит дело с прокатом, сколько изготовлено цемента, на что тратятся народные средства. Достаточно сказать вам, что в статистике по стране заняты многие десятки тысяч людей. Однако надо заметить, что сегодня весь процесс сбора и обработки цифровых данных производится с помощью электронных машин. И 800 экономистов и 1200 работников Главного вычислительного центра нашего Центрального статистического управления вряд ли что могли бы сделать без их помощи. Телетайпы передают нам сообщения из республик и областей. Эти сведения обрабатываются на ЭВМ. Их анализирует экономист, и они вновь поступают в машину. Наши счетно-вычислительные станции, кроме обслуживания ЦСУ, проводят расчеты для 17 тысяч колхозов и 4 тысяч совхозов. - Как же вы умудряетесь прогонять этот поток информации через машины? - Дело статистики претерпело значительные изменения. Когда-то люди считали на счетах, потом появились арифмометры. Сейчас с огромной скоростью машины обрабатывают первичные данные и дают конечные результаты. Но это вам лучше увидеть самим. Сходите в наш Главный вычислительный центр, посетите зал электронно-вычислительных машин, и вы почувствуете, сколько техники участвует в анализе того океана информации, который поступает в наше управление. Узел связи Главного вычислительного центра ЦСУ напоминает телетайпный зал большой газеты. Десятки телетайпов печатают на длинных полосах бумаги цифры, передаваемые из невидимого далека. Александр Михайлович Иванов, заместитель главного инженера вычислительного центра, не торопясь объясняет: - В этом зале 22 телетайпа. Они работают круглые сутки, принимая и передавая телеграфные сведения. Нам отвечают на запросы. Нам дают новые сведения. Мы принимаем их или в виде цифр, напечатанных на широкой ленте, или сеткой отверстий на перфоленте, которая может быть сразу заложена в электронную машину. - Как же вы разбираетесь в этом потоке цифр? - спрашиваем Иванова. - Пойдемте, я покажу вам машину, которая сортирует поступающие сведения. Эта электронно-вычислительная машина выполняет все четыре действия. В ее электронной памяти свыше четырех тысяч знаков, стопки перфорированных карт проходят сквозь считывающие устройства. 300 карт в минуту. Результаты тут же получают на печатные устройства - 300 строк в минуту на белом рулоне бумаги. Две женщины неторопливо склоняются возле машины, всматриваются в цепочку результативных цифр. - Что вы подсчитываете? - спрашиваем экономиста Галину Тополину. - Считаем мебель - сколько ее производится по всей стране,- объясняет она. - А мы только что экономили подсчет тканей в ассортименте,- вступает в разговор ее подруга оператор Лена Андреева. - О, так вы первые узнаете все секреты нашего производства? Кстати, какое у вас образование? Интересно знать, кто работает на электронных машинах ЦСУ. - Я учусь на втором курсе Московского экономико-статистического института,- говорит Галина. - А я закончила шестимесячные курсы операторов ЭВМ и тоже мечтаю поступить в институт. Переходим в зал электронно-вычислительных машин ЦСУ. Знакомые машины "Минск-22" и "Минск-32" "перемигиваются" цветными глазками. У пультов управления склонились операторы. Инженер Андрей Павлович Масляненко знакомит нас с работой одной из машин. Здесь трудятся сегодня работники Научно-исследовательского института ЦСУ. Идет сложная обработка данных. Необходимо выяснить средние значения бюджета советской семьи по стране. - Для этого исследования,- рассказывает Масляненко,- был изучен бюджет 64 тысяч семей в разных концах страны. Во всех республиках и областях производились обследования по единой технологии. Полученные данные и были заложены в ЭВМ. - Зачем нужны подобные исследования? - А как же иначе? - отвечает Ольга Сергеевна Павлова, проводящая эксперимент на ЭВМ.- Наши результаты крайне необходимы для регулирования бюджета страны. Такие работы мы проводим каждый квартал. - Ну, а сведения, поступающие в машину,- в каком вида передаются они сюда, в Москву? - Информация готовится на местах,- поясняет второй экспериментатор, Нина Иосифовна Гавриленко.- В республиках она наносится на перфоленту. А у нас все данные поступают уже на магнитных лентах. Все это значительно ускоряет обработку цифровых данных и возможность анализа их. - Как скоро получаете вы сведения с мест? - спрашиваем мы у Володарского, когда возвращаемся в его кабинет. - Вот здесь, в нашем сборнике, все годовые данные по стране. Они учитывают не только фактические цифры, но и те социальные проблемы, которые решаются в стране. Уже на 4-е число каждого месяца 30 промышленных министерств получают от нас итоги предыдущего месяца. Если же мы связываемся с конкретным заводом, мы получаем сведения от него на следующий день. Как видите, статистика - дело серьезное. Здесь нужна точность и скорость. Поздно вечером мы покидаем здание ЦСУ СССР. Где-то в его стеклянных залах негромко стучат телетайпы. Неслышно "перемигиваются" цветными глазками электронные машины. Но в этом здании, соединенном тысячами нитей со всеми концами Родины, незримо рождается ее математическое подобие - цифровая модель страны, уверенно и успешно созидающей новую жизнь. 16 мая, суббота О чем бы мы ни разговаривали во время работы на посту, нас всегда, словно ветром времени, относило к космонавтике. Во-первых, Петя мечтает со временем переквалифицироваться на космонавта. Ероша свои белобрысые, коротко подстриженные волосы, он говорит: - Наша специальность кибернетиков - первая профессия в космосе. А футбол, он человека не хуже центрифуги закаляет - только вертись!.. Во-вторых, какие-то романтические привязанности к космосу просматриваются в Нининой заинтересованности. Нет-нет да и повернет она разговор на Германа Титова. В этом случае Николай мрачнеет и пытается весь успех космонавтов целиком перевести на счет кибернетических машин. - Но как же все-таки люди полетят на другие планеты? - волнуется Нина.- Как им пройти сквозь годы, сквозь дали, сквозь пустоту мирового пространства? - Не волнуйся,- ледяным голосом откликается Николай.- Человека можно подвергнуть состоянию анабиоза, вызвать искусственный летаргический сон, человек может быть на время даже заморожен. Умные роботы отогреют и разбудят его, лишь только корабль приблизится к цели своего путешествия. Это я читал в научно-фантастическом романе. Так и до других галактик долететь можно. - Да, но расстояния между галактиками так велики, что световой луч проходит их в течение десятков и даже сотен световых лет. А скорость света - 300 000 километров в секунду. Значит, мы никогда не узнаем, что там. - Друг мой,- обратился я к Киберу, когда все разошлись.- Ведь ты наверняка все знаешь о наших космонавтах. К. Я помню, как я волновался при запуске на орбиту Гагарина. Ведь он был первым человеком, взлетевшим в не- изведанное. "Что будет с ним при запуске? - думал я,- Как он перенесет перегрузки? А вдруг он потеряет сознание?" Это же не тренировка на центрифугах, а взлет на ракете. А. Но теперь ты видишь, что волновался напрасно? К. Это еще не все... Ведь машинам приходится брать на себя и вторую половину работы - управление кораблем во время полета и приземления. Говорят, это очень страшно, когда корабль врезается в толщу атмосферы. Пламя горящей оболочки рвется в иллюминатор, и космонавт вновь испытывает перегрузки. Естественно, здесь без меня невозможно было обойтись. Мне-то на Земле спокойно - одна, так сказать, нервная нагрузка, или, как вы говорите, душевное волнение. А. Ты что же, действительно волнуешься? К. Куда там - я машина... ЗЕМЛЯ - КОСМОС - ЗЕМЛЯ Сегодня, когда весь мир восторженно смотрит в космос, ожидая все новых и новых успехов в завоевании Вселенной, нельзя забывать о великом значении тех самых машин, которые остаются на Земле. Выброшенный в космическое пространство на огненных столбах ракет, космический корабль выходит на орбиту, отрываются одна за другой ступени ракет. Но ведь для того, чтобы корабль начал свое стремительное вращение вокруг Земли по заданной траектории, машина должна с исключительной точностью рассчитать этот путь. Не может быть допущена даже малейшая ошибка в заданной скорости, в тяге двигателей, в направлении полета. Ведь отклонение в скорости всего на десятки метров в секунду или в направлении движения на один градус вызовет непоправимую ошибку. Космический корабль или спутник сойдут с заданной орбиты более чем на 100 километров. Сложнейшие машины принимают участие в расчетах орбиты. Задача еще более усложняется, когда ракета движется в направлении другой планеты. Здесь еще опаснее совершить ошибку. Представьте себе всю сложность поставленной проблемы: космический корабль направляется на Луну. По своей орбите движется в космическом пространстве Земля. Она вращается вокруг своей оси. Вокруг Земли вращается ее спутник - Луна. Корабль должен быть выпущен так, чтобы в какой-то определенной точке Вселенной встретились Луна и созданное разумом человека тело, состоящее из металла, электроники и пластических масс. Космический корабль должен торопиться к месту выхода на окололунную орбиту по спиральной траектории, чтобы ни в коем случае не опоздать или не прийти раньше. Вес пусковых ступеней непрерывно меняется - запасы горючего уменьшаются. Вот и попробуй правильно прицелиться и рассчитать эту сложную цепочку действий, составляющих возвратный полет на Луну. На окололунной орбите от корабля в определенный момент должен отсоединиться специальный отсек для посадки на Луну. Затем он должен вернуться к кораблю на окололунной орбите и вместе с ним отправиться к Земле. Для машины решение этой задачи вполне возможно. Ракета еще стоит на старте, она еще не ушла в космос, но автомат управления уже работает. Он тщательно проверяет всю систему: ведь это ему придется управлять ракетой в полете. Вспышка. Ракета на столбе огня поднимается в небо. Автомат управления направляет и регулирует ее движение. Но как? Двигатель обладает чудовищной мощностью - миллионы лошадиных сил. В металлическом цилиндре космического корабля заключена мощность, превышающая возможности крупной электростанции. В считанные мгновения расходуется огромный запас энергии. И опять-таки здесь никак не обойдешься без подробных и точнейших расчетов. Процесс горения напоминает растянутый во времени взрыв. Как с ним справиться, как отрегулировать титанический поток пламени, тяговые усилия ракеты, когда отбросить сработавшую ступень, когда включить следующую ступень? Все эти вопросы не должны беспокоить космонавтов. Все автоматизировано, все корректируется с Земли! Между космическим кораблем и постом управления, расположенным на Земле, существует постоянный, живой мостик связи. Вспомните, как взволнованно всматривались мы в лицо космонавта, запечатленное на экране телевизора! "Самочувствие прекрасное. Мышление и работоспособность сохранились полностью",- сообщал Юрий Гагарин, первый человек, прикоснувшийся к тайнам Вселенной. И разве не так слушали мы голоса и всматривались в лица уже не одного, а трех обитателей "Восхода", пассажиров корабля "Союз", ученых-космонавтов орбитальной станции "Салют". Мостик связи человека в космосе с машиной, управляющей полетом с Земли, идет по нескольким направлениям. Во-первых, это радиосвязь Земля - космос - Земля. Во-вторых, это связь космос - космос между двумя кораблями. Наконец, это то, о чем мы уже говорили,- радиоуправление всей системой космического корабля с Земли: выведение его на орбиту, управление в полете, управление одной из наиболее сложных фаз - приземлением корабля. При выходе на орбиту и во время приземления космонавт полностью отключается - громаднейшие перегрузки могут помешать ему управлять кораблем и ракетой. За него работает автоматика на самой ракете и "умная" машина на Земле. И недаром о действии этой автоматики восторженно отзывается ученый-космонавт К. П. Феоктистов. Он рассказывает: "У нас все работало отлично. При приземлении скорость была равна нулю - мы даже лунку посадки обнаружили не сразу. После посадки - свежая стерня. Лунка оказалась глубиной всего в 6 сантиметров". Между космическим кораблем и Землей существует и телевизионная связь. Это длинная цепочка передачи изображения электромагнитными колебаниями с космического корабля, которые попадают на приемные пункты обычной радиотелевизионной релейной линии. Затем изображение поступает в центр телевизионного вещания и уже отсюда идет по эфиру. Но, пожалуй, самым своеобразным и интересным является биотелеметрический канал. Это, если хотите, канал интимной связи человека, находящегося во Вселенной, с умной машиной на Земле. Человек в космосе все время находится под пристальным наблюдением врачей и специалистов. Ни на одно мгновение - бодрствует ли космонавт, спит, работает или обедает - его состояние не выпадает из-под бдительного контроля с Земли. Это может быть прямая передача основных денных о космонавте. Но она не всегда осуществима: космический корабль уходит из пределов досягаемости. За это время необходимо где-то накопить все данные, чтобы затем немедленно передать их на Землю, когда космический корабль сможет связаться с наземными установками. Для этого на космическом корабле есть специальные "накопители" информации. Как же практически осуществляется контроль над функциями человека в космосе? На различных участках тела человека закрепляются датчики - небольшие приборы, которые должны передавать показания дыхания, пульса и другие физиологические данные, характеризующие состояние человека. В качестве датчиков используют, например, фотоэлементы с миниатюрной лампой. Кровь пульсирует, меняя тем самым освещенность фотоэлемента, а соответственно и величину тока на выходе. Чтобы очень точно измерять температуру тела, используют термисторы. Это - электрическое сопротивление, чутко меняющееся в зависимости от температуры. Для регистрации дыхания на грудь надевают специальный пояс. На поясе установлено сопротивление, меняющееся в зависимости от дыхания. Все эти электрические данные передаются на Землю, но не в чистом виде - они как бы накладываются на основной поток электромагнитных колебаний. Путь этой информации следующий. Надо снять показания, наложить его на переданную частоту радиопередатчика и направить на Землю. Здесь из полученных колебаний вновь выделяются только те, которые характеризуют здоровье человека. Кроме этих, так сказать, обычных показаний, врачей интересуют и другие, более сложные данные. Их интересует электрокардиограмма - запись электрических токов сердца; электромиограмма - запись биотоков мышц; электроэнцефалограмма - запись электрических импульсов мозга. Каким же образом снимаются эти показания? На теле космонавта закрепляются очень легкие электроды, улавливающие самые ничтожные колебания тока. Ведь в мышце, например, величина тока составляет лишь одну десятитысячную часть всего количества энергии, освобождающегося при ее сокращении. Видимо, эти колебания необходимо усилить, прежде чем их передавать. Так и поступают. При полете Андрияна Николаева и Павла Поповича постоянно записывались показания работы сердца, мышц, дыхания, биотоки мозга и еще два очень интересных показателя - движения глаз и кожная реакция. При длительном пребывании в состоянии невесомости может произойти нарушение вестибулярного аппарата - аппарата равновесия. В этом случае происходят неожиданные периодические движения глазного яблока. По количеству и характеру этих движений можно очень хорошо судить о состоянии человека при невесомости. Вот почему Павлу Поповичу в уголки глаз были прикреплены крошечные электроды. Их показания тоже передавались на Землю. А кожная реакция? Это своеобразный показатель эмоционального состояния космонавта. Измеряя время от времени кожное сопротивление с помощью электродов, присоединенных к стопе и к нижней части голени, врачи судили о возможных сдвигах в эмоциональном состоянии человека, особенно в период выхода на орбиту и приземления. Связанный с Землей незримыми нитями радио и телевидения, оплетенный тонкой сетью проводов, крошечных датчиков и электродов, космонавт неизменно чувствует рядом родную Землю. Она прислушивается к биению его сердца, к его дыханию, она словно склоняется над космонавтом, всматриваясь в его глаза, она спрашивает: "Как ты себя чувствуешь? У тебя все в порядке?" И даже когда космонавт спит, или находится в состоянии невесомости, или, наконец, испытывает перегрузки во время приземления, Земля не оставляет своего сына без помощи. Если космонавту потребуется совет, она даст его. Больше того, Земля может показать ему по телевизору, как провести ту или иную операцию. Дает советы, которые могут вылечить его, помочь в самые трудные минуты полета. Может быть, вы знаете древнюю прекрасную легенду об Антее, получавшем силу от родной земли. Таким Антеем сегодня является завоеватель космоса, непрерывно прикасающийся к родной земле незримыми пальцами электроники. Ведь связи человека с Землей были бы невозможны без этих бдительных электронных сиделок, без помощи умных, внимательных и чутких машин. Наши герои-космонавты постепенно обживают космос. Для них становится привычным многодневный полет. "Спать в космосе легко,- рассказывает Герман Титов.- Поворачиваться ни к чему: ни руки, ни ноги не затекают. Чувствуешь себя, как на морской волне". "В космосе я все делал по-земному,- говорит Павел Попович.- Выполняя работу, предусмотренную программой полета, с аппетитом ел, занимался гимнастикой, хорошо и крепко спал, при этом без сновидений". Космонавт Валерий Быковский рассказывает, что отлично освоил технику передвижения в состоянии невесомости. Он освобождался от кресла и свободно плавал в кабине корабля. Обычно космонавты передвигаются в кабине, отталкиваясь от стен. Но ведь они могли бы плавать точно так же, как в воде. Правда, для того, чтобы получить разгон, им потребовалось бы гораздо больше времени: плотность воздуха в 800 раз меньше плотности воды. "Думаю, что, надев ласты, космонавт мог бы увеличить скорость передвижения",- шутит Валерий Быковский. Наши космонавты уже не страдают в космосе отсутствием аппетита. Если Титов питался из тюбов, то в меню Николаева и Поповича входила жареная курица и тефтели, а Попович захватил с собой в космос воблу. Быковский и Терешкова питались совсем как на земле: жареный язык, пирожки с колбасой, апельсины, кофе. "Теперь можно мечтать о создании космической лаборатории со штатом в десятки научных работников. Время это не за горами - тачие лаборатории будут",- высказывается Константин Феоктистов. А сейчас функционирует космическая лаборатория "Салют", рассчитанная на двух-трех сотрудников. В такой лаборатории космонавты Виталий Севастьянов и Андриян Николаев провели восемнадцать суток, занимаясь научными исследованиями. Станция автоматически запускается на орбиту с Земли самостоятельно, без космонавтов. Вес ее на орбите равен почти 20 тоннам-на ней свыше 1300 приборов и агрегатов. К этой станции пристыковывается транспортный корабль с космонавтами, которые переходят в станцию для научной работы. Общая длина лаборатории превышает 23 метра, вес ее более 25 тонн, диаметр свыше 4 метров. Можно представить себе роль кибернетики на такой космической обитаемой установке, где поддерживаются "земные" условия существования, хотя космонавты пребывают в невесомости. ЭВМ берут на себя и запуск станции и ее обслуживание, запуск и возвращение транспортного космического корабля, постоянную радио- и видимую связь с Центральным постом управления на Земле. Не менее сложным представляется запуск и обслуживание автоматической станции, запускаемой на Луну. Эта станция не только прилуняется, она имеет в своем распоряжении луноход, передвижение которого по поверхности нашего спутника управляется с Земли. "Водитель" лунохода не только видит путь, по которому движется самоходная установка, он командует этим движением на фантастическом расстоянии от машины. Достаточно сказать, что радиосигнал с Луны и обратно идет на протяжении нескольких секунд. А автоматический забор грунта с Луны и отправка его на Землю - разве это не подлинное чудо кибернетики! Разве не таким же чудом предстает перед нами исследование таинственной Венеры и Марса с помощью автоматических приборов, дающих изображение поверхности планет, анализ химических составов их атмосфер, температуру и плотность их! Это она, кибернетика, обеспечила успех выполнения американской программы "Аполлон" по высадке космонавтов на Луну. Разговаривая на Международном астрономическом конгрессе в Баку с Чарльзом Дреппером, создателем электронно-навигационной системы космических кораблей, доставивших на Луну первых землян, я услышал от него о трудности поставленной задачи. "Я отлично понимал,- говорил Дреппер,- всю сложность проблемы. Необходимо абсолютно точно осуществить посадку на Луну, но, вероятно, еще сложнее от нее оторваться. Чтобы вы могли представить себе сложность задачи, скажу: у космонавтов, высадившихся на Луну, остается горючего в баках всего лишь на 10 секунд работы двигателей, чтобы вернуться не промежуточную окололунную орбиту. Чтобы одолеть все трудности электроники, пришлось привлечь к делу свыше двух тысяч инженеров, математиков, астрономов. А всего над программой "Аполлон" работало 10 тысяч человек на протяжении 15 лет". Совместная советско-американская программа освоения космоса предусматривает стыковку и совместный полет советских и американских космонавтов. Решающую роль в проведении совместной акции также будет играть кибернетика. Человек, как только он стал человеком, всегда смотрел в небо... Смотрел напряженными, пытливыми глазами, стремясь понять в звездном хаосе Вселенной ее неразгаданную закономерность. И сегодня мы вновь поднимаем глаза в заоблачное пространство. Там где-то, высоко-высоко над нами, по своей строго рассчитанной орбите проносится очередной космический корабль. В нем советские космонавты, магнетически притянувшие к себе внимание всего человечества. Еще один шаг в космос - еще одна ступень к познанию. За ней последуют новые шаги. И так без конца - ибо нет предела пытливости человека, глядящего в небеса. Перед моим мысленным взором - покрытые космической пылью, древние ступени, запечатлевшие следы гигантов. Полтысячелетия тому назад... Гений Николая Коперника останавливает Солнце и впервые дает движение Земле. Открытие, равное чуду. На площади Цветов в Риме пламя иезуитского костра бессильно лижет опаленные ноги Джордано Бруно, коснувшегося бунтарской истиной небесного свода. Безжалостный суд инквизиции пытает Галилео Галилея, подарившего людям звездные бездны в окуляре первого в мире телескопа. Некогда безвестный калужский титан в облике простого школьного учителя, Константин Циолковский, дотянулся до звезд набросками первых космических кораблей. А ведь они стали прообразом сегодняшних "Союзов" и "Аполлонов". Имя русского гения стало бессмертным. Почти невероятно... Но как только человек шагнул в небеса, они оказались ему абсолютно необходимыми для близких земных дел. С восторгом закричал в космический микрофон Юрий Гагарин: - Какая она красивая, наша Земля! Он первый увидел планету со стороны, чтобы сегодня пристально смотрели на нее глаза сотен исследователей. Торопливо зарисовывал в невесомом блокноте невесомыми цветными карандашами феерическую картину сумеречного горизонта Алексей Леонов. Как важен для науки этот первый внеземной рисунок художника Вселенной. И Нейл Армстронг поднял из-под ног кусок лунной породы, так похожий на осколок земной скалы. "По Луне - легче понять Землю" - сказали ученые. Так живой восторг первооткрывателей стал не только объектом большой науки, но он вошел в нашу действительность неотъемлемой частью повседневной практики. Программа, которую кропотливо выполняют советские космонавты,- живое тому подтверждение. С высоты гагаринского полета советские космонавты изучают природные образования планеты, исследуют эрозию почвы на больших пространствах, состояние лесов и посевов, загрязнение морских вод, ледников, озер и рек. Оказалось: из космоса куда виднее и доступнее следить за состоянием лика Земли, расшифровывать ее загадки. Теперь мы знаем, что изучение красочного леоновского сумеречного горизонта не что иное, как научное знакомство с аэрозолью атмосферы. А это ключ к исследованию климата разных частей планеты. Фотографии облачных завихрений над континентами - ключ к исследованию метеорологических проблем нашей планеты. Исследования космоса из космоса стали в один ряд с обычными научными работами. И всего этого не могло бы быть, если бы кибернетика с ее сложным миром ЭВМ не стала бы тем мостом, который соединил жителя Земли со всей Вселенной. Приблизив Землю к небесам, кибернетика совершила подлинное чудо нашего XX века. Советские и американские орбитальные станции с космонавтами на борту уже функционировали на протяжении нескольких десятков дней. Впереди новые планы, новые успехи. Контуры грядущего уже встают перед глазами не только фантастов, но и ученых и инженеров. Мечта поселяется в научных лабораториях, в цехах заводов, в квартирах космонавтов. "Вопрос ближайшего будущего,- высказывается академик Л. И. Седов, - создать спутник - орбитальную станцию, летающий космический институт с многочисленными сотрудниками". Такой космический институт может необычайно щедро обогатить нас новыми знаниями. Но такое учреждение может быть заброшено в космос и сможет существовать там только при непосредственной помощи "умных" машин - верных помощников человека. Пока что они не подводили своих хозяев. 17 мая, воскресенье Опять на Центральном посту разгорелся жаркий спор. Он начался в обеденный перерыв, затих на время работы и вновь возобновился вечером. Началось с малого. Петя Кузовкин вызвал Николая Трошина на матч. Они сидели за шахматной доской возле Кибера, отчаянно морщили лбы и отмахивались от иронических реплик окружающих товарищей. Они самоотверженно сражались за пальму шахматного первенства. И началось все с чисто теоретического спора. Трошин убежден, шахматы - это наука. - Какая же это игра? Именно наука. Самая точная наука - чистая математика, - говорил Николай, потрясая шахматной доской, которую он принес из общежития. Не зря в шахматы даже ЭВМ играют. - Нет, искусство,- упрямо возражала Нина. - Ну что может сказать Охотникова - звезда новомосковской сцены? - шутил Петя.-Я считаю, шахматы - это один из видов спорта. Не напрасно шахматные турниры проводят не на технических советах, а перед взорами болельщиков. Я был чрезвычайно заинтересован этим разговором. Он показался мне своеобразным отражением спора, возникшего вокруг тех же проблем между сильнейшими шахматистами мира. Я хорошо знаю Василия Смыслова. Это настоящий талантище в области шахмат, обладающий острейшей интуицией, поразительной смелостью мысли, неистощимой выдумкой. Василий Смыслов отрицает главенствующую роль шахматных машин в будущем. Что же касается его постоянного соперника _ Михаила Ботвинника, то он высказывает противоположное мнение. Электронный шахматист превзойдет человека. - А что думает по этому вопросу Кибер? Сначала он как будто затаился, но потом сказал мне доверительно. К. Знаешь, я следил за игрой. В эндшпиле я обязательно положил бы Николая на обе лопатки. А. А если бы тебе доверили всю партию - выиграешь? К. Что ты, это совершенно невозможно! У меня не хватит ни времени, ни интуиции... А. Так на что же ты способен? К. Пока что могу решать частные шахматные задачи. Но ведь и это неплохо. А. Конечно, неплохо... Шахматная игра - это своеобразный экзамен для любой вычислительной машины. Не зря все машины "испытывают" в решении шахматных задач. К. Почему?.. МАТ В ДВА ХОДА Иногда я задумываюсь, почему при обсуждении проблемы кибернетики обязательно разговор переходит на машину, умеющую играть в шахматы. Почему проблема шахматной игры, которая, видимо, в чем-то сближает человека с машиной, стала одной из наиболее широко обсуждаемых? То ли человек не хочет сдавать свои позиции электронному мозгу, то ли наоборот - человек хочет подружиться с машиной и на досуге поиграть с ней в шахматы. Но, присматриваясь к этому вопросу внимательнее, начинаешь понимать: да, действительно, без шахмат не обойтись в споре с машиной. Не может быть и, вероятно, нет лучшего материала для математического анализа человеческого мышления, чем шахматная игра. Решение шахматной проблемы - сказочный, великолепный материал для сопоставления работы мозга с работой электронной машины. Впервые электронные машины были использованы для игры в шахматы в 1956 году, и с тех пор испытание каждой новой модели счетной машины в шахматной игре стало почти обязательным делом. И это закономерно. Шахматы родились давно. Они пришли в Европу с Востока и завоевали всеобщую любовь. Было бы неправильно говорить, что они не претерпели изменений на протяжении многих сотен лет. На Востоке шахматы - медленная, тягучая игра, в которой ферзь и конь были менее подвижны, чем сейчас. На рубеже XV-XVI веков произошла коренная реформа в шахматной игре - фигурам дали большую подвижность. Где именно произошла реформа, трудно сказать: говорят, что в Испании или в Южной Франции. За короткий исторический срок новые шахматы полностью вытеснили старые. Они оказались более динамичными, более интересными, допускали более сложные комбинации. Некоторые связывают появление новых шахмат с той динамикой крупных географических открытий и перемещений, какие происходили в это время в Европе. Шли годы. Шахматы превратились в одну из наиболее любимых, популярных игр в мире, стали лучшей тренировкой для мозга и для анализа человеческой мысли. Вот почему и машины обратились к этой установившейся системе анализа возможностей человеческого мозга, к подобию шахматной игры. Можно ли в машине моделировать шахматную игру? Ведь игра требует не только запоминания комбинаций, она в большой степени опирается на глубокую интуицию человека, мозг которого хранит колоссальный запас информации. Кстати, большинство этих запасов так и остается нетронутым на протяжении всей нашей жизни, подобно тому как в Ленинской библиотеке примерно половина всех книг никогда не открывалась читателями. Но книги должны существовать, и информация в мозгу человека всегда должна быть наготове к использованию - вдруг она потребуется. Шахматнея интуиция беспредельно упрощает путь к победе. Шахматный теоретик - руководитель лаборатории психологии Научно-исследовательского института физкультуры В. Алаторцев, оценивая творчество известного шахматиста В. Смыслова, говорит о том, что для экс-чемпиона мира характерна глубинная интуиция в самых сложных партиях. В. Смыслов, анализируя чрезвычайно запутанную позицию, удивительно быстро выбирает из многих сотен решений лучшее. Как? Каким путем? Это происходит не потому, что шахматист "прогоняет" через себя все решения, а потому, что иногда его ведет интуиция, за которой стоят и опыт, и память, и то, что характеризует удивительные свойства человеческого мозга, отличающего его от самой "умной" машины. В состоянии ли машина, лишенная интуиции, а поэтому честно перебирающая все возможные комбинации шахматных партий, довести эту партию до конца? Давайте посмотрим... Известный бельгийский математик Крейчик попытался подсчитать возможное число вариантов шахматных партий. Оно оказалось фантастически большим: 2х10118. Если предположить, что все население земного шара - три с половиной миллиарда человек - круглые сутки будет играть в шахматы, ни на мгновение не задерживаясь, то есть каждую секунду передвигать на доске по одной фигуре, то понадобится 10100 веков, чтобы переиграть все возможные варианты. Вот насколько велико разнообразие шахматного искусства! Оказывается, электронные машины современного уровня не в состоянии рассчитать все варианты даже первых пяти ходов. Давайте посмотрим, в чем тут дело. В нормальной шахматной позиции теоретически имеется приблизительно около 30 возможных продолжений. Рассчитывая их на один ход, мы получим 302, то есть около 1000 вариантов. Расчет на два хода даст 10002 вариантов. Расчет на пять ходов даже при самых немыслимых скоростях работы машины невозможен по времени, потому что машина должна добросовестно отработать все варианты, а их бесконечное множество. Как же решить задачу игры в шахматы с машиной? Можно ли создать точный алгоритм шахматной игры? Оказывается, сделать это в окончательном виде нельзя. Машина не справится с задачей - слишком много вариантов придется ей проигрывать. Когда с этим вопросом обратились к М. Ботвиннику, он сказал: - Шахматист на уровне мастера иногда рассчитывает на 10, даже на 12 ходов вперед. - Значит, он думает быстрее счетно-решающей машины? - Конечно, нет. Но во время расчетов шахматист не использует всю доску с 64 клетками. В его поле зрения находится одновременно не больше 10-16 полей, то есть его задача необыкновенно облегчается. Для шахматиста ряд фигур вообще не играет никакой роли - они как бы полностью выпадают из сферы внимания игрока. Обычно из общего числа в 25-30 фигур в расчетах участвуют 3-6 фигур, не больше. Представляете себе, насколько это облегчает задачу? Далее М. Ботвинник говорит: - Создатели вычислительных машин до сих пор делали точные машины, и они собирались сделать и точную машину-шахматиста. К сожалению, создание такой машины - машины-сверхшахматистов - вряд ли возможно. Но не следует ли поставить другую задачу - создание машины, которая бы думала так же несовершенно, как шахматист, ошибалась бы так же, как простые смертные гроссмейстеры. Тогда задача облегчается, вероятно, в миллионы раз в отношении расчета вариантов и становится практически разрешимой уже для сегодняшней техники. Иначе говоря, мы будем терпеть неудачи до тех пор, пока будем пытаться создать машину-сверхшахматиста. Думаю, что задача будет разрешима, если мы будем пытаться создать машину "по образу и подобию своему". Уже сегодня, создавая машины "по образу и подобию своему", было бы интересно установить хотя бы некоторые закономерности игры. А их много... Знаменитый шахматист А. Алехин одним из положений игры считал, что, например, двигательная инициатива дороже небольшой материальной добычи. Многолетний чемпион мира Эммануил Л аскер утверждал: "Помимо ценности отдельных фигур, существует ценность координированного действия их..." Можно поставить и такой вопрос: обеспечивает ли игра белыми, то есть право первого хода, победу или ничейный результат при "идеальной" игре с обеих сторон? Математики на этот вопрос не могут дать исчерпывающего ответа. О чем говорит опыт соревнований? Международный гроссмейстер Ю. Авербах произвел очень интересный подсчет. Каждый шахм